>INDSTRÖM®

Jewelry

Medical Device Manufacturing

Aerospace & Defense

Precision Tools

Delivering consistent, precise performance with a professional feel for users who excel in their field

Cutters

Tweezers

> Torque Tools

Welcome to the Lindström World of High Precision

Marian T. Wells President, SNA Europe

OUR BUSINESS IS AT THE VERY HEART OF THE STORY OF TOOLS

Tool manufacturing is a fascinating combination of raw, basic elements and the most modern high technology. Hand tools exist since 2.5 million years ago and some of them have not changed much to the eye over the past century. However, there is an ongoing development in terms of materials and manufacturing processes, in which we focus on innovation, ergonomics and performance.

Our products are designed for professionals of various industries, such as Electronics, Medical Device Manufacturing, Aerospace & Defense and General Industry. We manufacture our products in factories located in Europe and control every part of the process focusing on uncompromising safety and quality.

Our ambition is to continue being at the forefront of product development by connecting with the users of our tools to ensure we can develop products that will make their work easier and safer to perform.

LINDSTRÖM SINCE 1856

Lindström is the oldest continuous manufacturer of handtools in existence and yet one of the most forward-looking brands in the world.

We developed the scientific approach to handtool design and created the first truly ergonomic pliers and cutters. Since 1980 we have created more than 1,500 unique tool designs, many of which are now standard types in the electronics and medical device manufacturing industries. Some competitors have been able to implement one facet or another of our manufacturing process. Others have copied the form, appearance and actual part numbers of Lindstrom tools. However, none have been able to successfully blend all the elements required to achieve the level of performance recognised as true Lindstrom Precision Tools.

QUALITY

Lindström constantly works on improving quality and the manufacturing process. We test 100% of our products at many different facets of our manufacturing process to ensure the best performance of the tool.

Perfection is difficult to achieve but that is the goal we set for ourselves, and it is the standard our customers expect. Any customer who believes a Lindström branded product is not performing to their expectations should contact us immediately. At any time customers are invited to send tools to us for a free evaluation. We know it can be aggravating when products do not perform as expected, so we try to make it as easy as possible to repair or replace tools when warranted.

You are our customer. And our customers know good tools. So we rely on you to let us know when a tool falls short of your expectations so we can change course immediately and keep striving for 100% success.

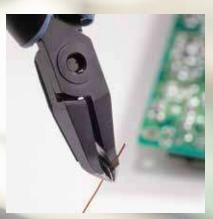
Lindström is one of the Snap-on Industrial brands. Thank you for choosing to be a Lindström customer. Lindström Team

Content

Introduction	Applications	4-11
	Tool Selector	12-15
	Handle Options	16-17
Diagonal Cutters		19
	Oval Head	20-21
	Tapered Head	22-23
	Tapered & Relieved Head	24-25
	Wire Strippers	26
	Carbide Cutters	28
	Performance Specific Cutters	29
	Plastic Cutters	30
	Heavy Duty Cutters	31
	Multipurpose Shear	32
Oblique Cutters		33
	End Head	34-36
	Angle Head	37-40
Tip & Micro Tip Cutters		41
	Tip Head	42
	Micro Tip Head	43
Holding Pliers		45
	Flat Nose	46
	Round Nose	47
	Chain Nose	48
	Bent Nose	49
	Snipe Nose	50
	Needle Nose	51

Specially Engineered Tools		52-54
	IC Tools & Cutters	55
	StandOff Cutters	56-57
	Cut & Bend	58
	Cut & Form	58
	Leadformers	59-60
Accessories & Spare Parts		62-63
Tweezers		64-65
	High Precision Tweezers	66-69
	General Purpose Tweezers	69-70
	Industrial Use Tweezers	70- 74
	Carbon Fibre Tips Tweezers	74-76
	Precision Component Handling Tweezers	77
	SMD Tweezers	77 - 79
Torque Tools		80 - 81
	Micro Adjustable Torque Screwdriver	82
	Preset Torque Screwdriver	83
Warranty & Services		84 - 85
Content		86 - 87

Electronics Assembly


Since the early days of the electronics era Lindström has been the brand of choice for manufacturers performing high volume work for critical applications.

Our RX Series ergonomic products were the first handtools designed to fit the hands and needs of the user. RX Series revolutionised the hand tool industry, beginning in electronics assembly, military electronics and aerospace production.

As these industries matured devices shrank in size and increased in complexity Lindström developed new profiles on pliers and cutters to meet industry demands:

- Ultra-Flush[®] cutters for anti-shock military applications
- Tapered and relieved cutters to get in between and under tiny components
- Extra-small tip cutters for microscopy applications

Still, the most valued feature of Lindström tools is high quality, from the famous Swedish steel to the attention to details like fit and finish.

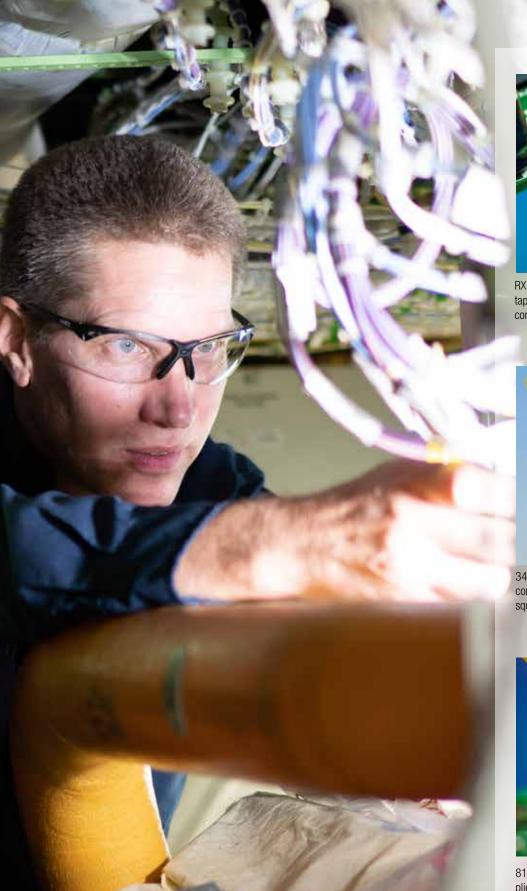
RX 8248 Flush cutters: 45° angled tips, long 18 mm jaws for improved access.

7892 Supreme bent nose pliers provide good reach and a non-marring gripping surface. Users gain better visibility and can operate with a comfortable wrist position with our 60° bent tip pliers.

51S-NC-ET tweezers: soft ESD safe, cleanroom compatible Ergo-Touch grips.

Aerospace and Defense


Lindström customers solve problems. Many of our standard off-the-shelf pliers and cutters are used throughout critical industries such as aerospace, defense and avionics manufacturing.


When presented with a need to prepare prototypes, insert or extract unique components, or cut proprietary hard wire, our customers turn to Lindström for Specially Engineered Tools made to order.

Lindström has developed tools used in specialized applications for the largest names in the military industry and for small start-up companies developing new technology. Every project receives the same attention to detail to develop a tool that is right for the job at hand. To make the process easy Lindström has no minimum order quantity for Specially Engineered Tools.

Our designers and Manufacturing Representatives work directly with end user production engineers to ensure success.

We thrive on solving problems with our customers. Contact one of our authorised distributors, manufacturers' representatives or our office through the Lindström website directly to start the process of designing your special tool today.

RX 8148 Ultra-Flush® diagonal cutter with tapered and relieved head is ideal for use in confined spaces and for rework.

341A cut and form pliers put stress relief in component lead and trims to length with one squeeze.

8140 oval head cutter and 7891 chain nose pliers are used extensively for wire harness work and assembly.

Medical Device Manufacturing Industry

Lindström is the cutter of choice for manufacturers of medical devices – both for trimming materials and assembling high-tech miniature electronics.

For over thirty years, Lindström cutters have been used to manufacture pacemakers, stents, catheters, guide wires and more. Lindström technological improvements are driven by our customers and their demand for reliable, precise and versatile tools.

Lindström has led the way in providing handtools that perform to the specifications of manufacturers for a wide range of materials including platinum, nitinol, stainless steel, titanium, and proprietary meshes and weaves.

8150M2 cutter used to trim multiple stents thanks to the modified hardened cutting heads.

7154TC Carbide Insert Cutters suitable for tip cutting hard wire catheters and stents.

Carbon fiber tweezers 249CFR-SA is often used in laboratory and medical applications when handling sensitive components or where chemical and/or high heat resistance is needed.

Jewelry

For more than 165 years Lindström handtools have been the choice of professional jewelry makers.

Today makers of jewelry and hobby creations – and a variety of artists – choose to use our pliers and cutters to create their unique designs, to precisely bend wire and consistently execute flush cuts.

Comfort, balance and ergonomics are important to Lindström users. Our products are an extension of their hands, the means to bring their creativity to fruition with tools they can rely on.

Exacting users demand a flush cut that is truly flush, a joint that keeps the jaws perfectly aligned, and an edge that stays sharp. Trust is crucial. Artistic creations often require expensive materials, with little tolerance for waste.

7892 Supreme pliers are favored by many bead and jewelry artists.

RX 7890 and RX 7892 pliers allow precise bends and feature ultimate ergonomic handles.

8141 cutters provide Flush cuts on bead wire and precious metals.

Cutters

Lindström cutters are designed to perform with ease, minimize operator fatigue and improve productivity. Through symmetric components, exact adherence to specifications and consistent hardening, Lindström delivers hallmark reliability.

The Lindström formula for success, refined over the last 165 years, rests upon the proprietary recipe for the steel from which we make our tools, very similar to that used to manufacture high-performance ball-bearings. The use of ball-bearing grade steel and appropriate heat treatment methods ensures Lindström cutters last longer than other brands used in the same applications. Lindström cutters are elevated to a hardness of 63-65 HRC on the cutting edge. For most manufacturers this hardness level would create a high breakage rate. Yet because of the steel and proper consistency, even when used beyond the rated capacity (as they often are!), Lindström cutters have remarkably little breakage.

CUTTING EDGE BEVEL / CUT RESULT

Micro-Bevel®

MICRO PEAK

Designed to meet the high quality requirements of our customers
Leaves a low profile cut result, important for solderability and connectivity

Unique design with wide cutting range to suit an unmatched variety of uses

Flush NANO PEAK

- Cut result leaves a narrow and short peak along the "pinch" line, decreasing the surface area at the cut
 Improves solderability
- Excellent for reducing lead-shock
 Very popular for the Medical Device and
- Very popular for the Medical Device a Jewelry manufacturing

Ultra-Flush[®] NO PEAK

45°

TP / Tip

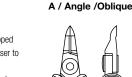
- The finest cut result available with the smoothest lead-end result
- Exceptional solderability
 Ultimate choice for minimising component
- and lead-shock • Perfect for use in close tolerance electronics, aerospace, defense and medical device manufacturing

HEAD TYPE

 The most common shape combining strength and durability
 Evenly distributes cutting impact
 Used for a wide variety of applications

The sides are shaped along diagonal lines
Improved access where space is limited
Improved maneuverability with good tool life

Tapered on both sides with underside cut away
Minimal profile offers access to very limited spaces


T&R / Tapered & Relieved

Unique Head

 Unique cutting heads developed together with specific end-user to solve critical applications
 Indström exclusive heads only

available within our range

Specialised adaption allows maximum access and reach

• Used under and between low profile,

fine lead pitch components

• Extremely small oval head shape for added strength at the tip

Limited Access, Low Visibility

8.0 / 0.31

5.0 / 0.20

High Cutting Capacity

HEAD SIZES

(a) 10.0 / 0.39 (b) 6.0 / 0.24

L Large (a) 16.0 / 0.63 (b) 8.0 / 0.31

Width (a) (mm / inch) SIZE Thickness (b) (mm / inch)

(a)

(b)

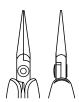
Pliers

Pliers replicate the function of the human hand, with greatly increased capability, in particular the thumb and index finger, in terms of force and precision. Holding pliers are available in almost unlimited shapes, styles, configurations, materials and sizes. Lindström's well renowned precision holding pliers are offered in three different series, each able to satisfy the most advanced needs of the professional user: RX Series, Supreme Series, HS Series.

Robust yet precise, Lindström pliers provide an excellent solution to a wide range of application challenges. A variety of handle styles, consistent balance and fine workmanship set our pliers apart from the rest.

SHAPE - MODELS FOR EVERY APPLICATION

Flat Nose = FN


- Flat square shape with parallel jaws provide the most surface area of standard pliers shapes
- Favored by chainmaille artists

Round/Flat Nose = R/F

A perfect combination of the Round Nose and Flat Nose
Handy for use in making fine curved wire work

Snipe Nose = SN

- Shorter version of the chain nose, with the best gripping strength
- Used where power and torsion are paramount for the application

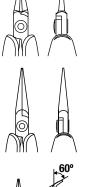
Needle Nose = NN

- Slimmer, more tapered version of chain nose design
- · Allows wire loop work farther into the jaws for better grip and control

TIP SHAPE (END VIEW)

Flat tip

Squared and parallel ends of the jawsA balance of strength and beauty, evident of tool making craftsmanship


Round tip

- End view of the tips are perfect circles
- Lindström's precision screw joint is the reason these fine tips achieve alignment

JAW SURFACE OR EDGE

Smooth surface

Finely milled and polished just enough to retain grip on wire

Round Nose = RN

- Round jaws taper from 7 mm to 1.0 mm at the tips
- Handy for closing loops and the finest wire work

Chain Nose = CN

- Versatile tips with Lindström's standard perfect joint and tip alignment
- · Named for the work it does so well

Bent Nose = BN

- Classic variation of the chain nose, with 60° bend at the tips
- Suited for positioning components or precise chain work

Round/Flat tip Like a tiny ball

Like a tiny ball peen hammer and anvil, these tips are all business

Chain Nose Tip

Designed to bend wire, these tips align like D-shaped pinchers

Serrated surface

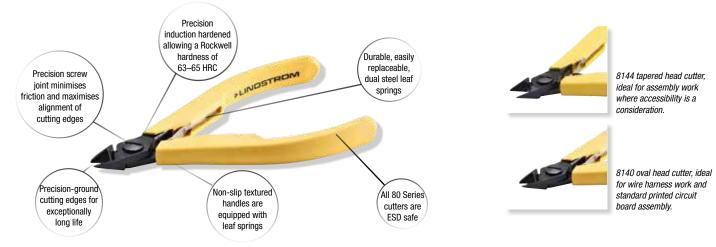
- Finely honed serrations allow extra "bite" for handling tricky materials
- · Cross-hatch serrations prevent objects from rolling into a groove

	RX	80	SUP	HS	со	М	Size	Shape	Cut Result or Surface	Page Number
	RX 8130	8130		HS 8130			Extra Small	Oval	Micro-Bevel®	20,21
S	RX 8131	8131		HS 8131	8131 CO		Extra Small	Oval	Flush	20,21
č	RX 8132	8132		HS 8132			Extra Small	Oval	Ultra-Flush®	20,21
ш	RX8133	8133		HS8133			Extra Small	Tapered	Micro-Bevel®	22,23
	RX8134	8134		HS8134			Extra Small	Tapered	Flush	22,23
	RX8135 RX8136	8135 8136		HS8135 HS8136			Extra Small Extra Small	Tapered Tapered & Relieved	Ultra-Flush® Micro-Bevel®	22,23
	RX 8137	8137		HS8130			Extra Small	Tapered & Relieved	Flush	24,25 24,25
	RX8138	8138		HS8138			Extra Small	Tapered & Relieved	Ultra-Flush®	24,25
2	RX 8140	8140	-	HS 8140	8140 CO		Small	Oval	Micro-Bevel®	20,21
	RX 8141	8141		HS 8141	8141 CO		Small	Oval	Flush	20,21
	RX 8142	8142		HS 8142	8142 CO		Small	Oval	Ultra-Flush®	20,21
	RX 8143	8143		HS 8143			Small	Tapered	Micro-Bevel®	22,23
	RX 8144	8144		HS 8144	8144 CO		Small	Tapered	Flush	22,23
	RX 8145	8145		HS 8145			Small	Tapered	Ultra-Flush®	22,23
	RX 8146	8146		HS8146			Small	Tapered & Relieved	Micro-Bevel®	24,25
	RX 8147	8147		HS8147			Small	Tapered & Relieved	Flush	24,25
	RX 8148	8148		HS 8148	8148 CO		Small	Tapered & Relieved	Ultra-Flush [®]	24,25
	RX 8149	8149		HS8149			Small	Тір	Flush	42
	RX 8150	8150		HS 8150	8150 CO		Medium	Oval	Micro-Bevel®	20,21
	RX 8151	8151		HS8151	8151 CO		Medium	Oval	Flush	20,21
	RX 8152	8152		HS8152			Medium	Oval	Ultra-Flush®	20,21
	RX 8153	8153		HS8153	0454.00		Medium	Tapered	Micro-Bevel®	22,23
	RX 8154	8154		HS8154	8154 CO		Medium	Tapered	Flush	22,23
	RX8155 RX 8156	8155 8156		HS8155 HS8156			Medium	Tapered Tapered & Relieved	Ultra-Flush® Micro-Bevel®	22,23 24,25
	RX 8157	8157		HS8157			Medium	Tapered & Relieved	Flush	24,25
	RX 8158	8158		HS8158			Medium	Tapered & Relieved	Ultra-Flush®	24,25
	RX 8160	8160		HS 8160	8160 CO		Large	Oval	Micro-Bevel®	20,23,21
	RX 8161	8161		HS 8161	8161 CO		Large	Oval	Flush	20,23,21
	RX 8162	8162		HS 8162			Large	Oval	Ultra-Flush®	20,23,21
	RX8163	8163		HS 8163	8163 CO		Large	Tapered	Micro-Bevel [®]	22,23
	RX 8164	8164		HS 8164			Large	Tapered	Flush	22,23
	RX 8165	8165		HS8165	8165 CO		Large	Tapered	Ultra-Flush [®]	22,23
	RX8166	8166L		HS8166			Large	Tapered & Relieved	Micro-Bevel®	24,25
	RX 8167	8167L		HS8167			Large	Tapered & Relieved	Flush	24,25
	RX 8168	8168L		HS8168			Large	Tapered & Relieved	Ultra-Flush [®]	24,25
	RX 8211	8211		HS8211			Small	Angle 20°	Flush	37
	RX8233A						Extra Small	Micro Tip 10°	Flush	43
	RX8234A						Extra Small	Micro Tip 10°	Flush	43
	RX8237A RX 8247	8247		HS 8247	8247 CO		Extra Small Small	Micro Tip 50°	Flush	43 38
	RX 8248	8248		HS 8247	8247 CO 8248 CO		Small	Angle 45° Angle 45°	Flush	39
	11/1 02-10	8249	-	110 02 10	0240 00		Small	Angle 45°	Flush	39
			7190		7190 CO		Small	Tapered	Micro-Bevel®	23
			7191		7191 CO		Small	Tapered	Flush	23
			7280	HS7280			Small	Angle	Flush	40
			7285	HS7285			Small	Angle	Flush	40
			7290	HS7290			Small	Angle	Micro-Bevel®	34
			7291	HS7291			Small	Angle	Flush	34
			7292	HS7292			Small	Transverse End	Flush	35
			7293	HS7293			Small	Angle	Flush	36
	BV6					7154TC	Medium	Tapered	Flush	28
	RX8140M2					8140M2	Small	Oval	Micro-Bevel®	28
	RX8150M2					8150M2 8160 M2	Medium	Oval Oval	Micro-Bevel® Micro-Bevel®	28
	RX8160M2					8154PSP	Large Medium	Tapered	Flush	28
	RX8140PS					8140PS	Small	Oval	Micro-Bevel®	29
	RX8140PS					8141PS	Small	Oval	Flush	29
	RX 8142PS					RX 8142PS	Small	Oval	Ultra-flush®	29
	RX 8147PS					RX 8147PS	Small	Tapered & Relieved	Flush	29
	RX8150PS					8150PS	Medium	Oval	Micro-Bevel®	29
						8160PS	Large	Oval	Micro-Bevel [®]	29
	RX8160BPS					RX8160BPS	Large	Oval	Micro-Bevel®	29
	RX 8161PS					8161PS	Large	Oval	Flush	29
	RX 7390						Small	Flat Nose Stubby	Smooth Tip	46
S	RX 7392						Small	Oblique, Stubby	Smooth Tip	46
ř	RX 7490		7490	HS7490	7490 CO		Small	Flat Nose	Smooth Tip	46
IER	RX 7590		7590	HS 7590	7590 CO		Small	Round Nose	Smooth Tip	47
	RX 7890		7890	HS 7890	7890 CO		Medium	Chain Nose	Smooth Tip	48
	RX 7891		7891	HS 7891	7891 CO		Medium	Chain Nose	Serrated Tip	48
Δ	RX 7892		7892	HS 7892	7892 CO		Medium	Bent Nose	Smooth Tip	49
	RX 7893		7893	HS 7893			Small	Snipe Nose	Smooth Tip	50
	RX 7894		7894	HS7894			Large	Needle Nose	Smooth Tip	51

- **>LINDSTRÖM**

Part lumber	38 0.004 0.1	32 0.008 0.2	28 0.012 0.3	0.016	24 0.02 0.5	0.025	21 0.028 0.7	20 0.032 0.8	19 0.036 0.9			0.051 1.3	15 0.055 1.4	0.060	0.063		0.070 1.8	0.074	12 0.080 2.0	Gauge Inch mm	Lea Catch
8130																			-		 ✓
8131 8132																			-		✓ ✓
8133																					~
8134	_							•													√
8135 8136					•																✓ ✓
8136																					✓ ✓
8138																					 ✓
8140											_										✓
8141	_										_										✓
8142																					√
8143 8144																			-		√ √
8145						-															· · · · · · · · · · · · · · · · · · ·
8146						-															√
8147																					~
8148																					✓
8149						-		-											-		✓
8150 8151																			1		✓ ✓
8152																					v √
8153																			1		√
8154]		✓
8155									-		 _										√
8156 8157	<u> </u>										-								-		✓ ✓
8157											—								-		✓ ✓
8160																					· · · · · · · · · · · · · · · · · · ·
8161																					~
8162																					~
8163																					~
8164																					✓
8165 8166																					✓ ✓
8167	-																		-		· · · · · · · · · · · · · · · · · · ·
8168											_										~
8211											•										~
8233A						-															
8234A																			-		
8237A 8247																					√
8248																					· · · · · · · · · · · · · · · · · · ·
8249																					
7190																					✓
7191																					✓
7280 7285																			-		
7285											<u> </u>								1		
7291											<u> </u>										
7292]		
7293																					
154TC									-										-		
8140M2 8150M2																			-		
160 M2																			-		
154PSP		_																	1		
8140PS]		
3141PS		_									_										
8142PS											-								-		
(8147PS) 8150PS																			-		
3150PS																			-		
8160BPS																			1		
	o wire		0.400 M	D-			RX Th	ne ultima	te in ergo	nomic			HS	Original E	SD safe	ergonom	ic			Lead C	
Hard Tensi Med	ile strengt I wire ible streng ium Har d	gth of wi d wire	re 1800 M	MPa			Tr		afe handl ESD safe handles					handle de ESD safe							umbers: 14, 816
Soft	ble streng wire ble streng					s			ESD safe Series har					Traditiona Medical S						- 4	

RX Series The ultimate in comfort, performance and precision


We have put all of our experience, technical expertise and ergonomic know-how into the successful RX Series. Take a close look at any RX tool, try it out and then compare it to all competitors on the market. Lindström RX Series will always come out on top!

►LINDSTRÖM[®]

The original Lindström 80 Series Cutters

Tried and true performance for the traditional user. The Lindström 80 Series remains the top choice for the traditional user. This range of cutters offers unsurpassed cutting capacity covering a wide range of wire dimensions and types. This is the technology that "started it all" for Lindström.

Lindström Supreme Series for dependable results

The Supreme Series features a precision screw & nut in an advanced lap joint design. Joint play is held to a minimum, ensuring precise alignment of the jaws even at the tips. Supreme Series oblique end cutters are preferred by jewelry and wire artists, while transverse cutters are uniquely suited to trimming leads in hard to reach assemblies.

1

7292 Supreme miniature end cutter is ideal for use in confined spaces

7590 Supreme round nose pliers with no sharp edges

HS Series Extra Large leverage ergonomic handtools

In the 1980s one of the pioneers of telecommunications asked us to modify some pliers and cutters. Lindström worked with the customer to develop handles that were longer, softer to the touch and provided more surface area to grip and manipulate the tools. The customer loved them! Howard Gittleson, a pioneer of ergonomic handtool research, dubbed this new design HandSaver, which we continue to produce today as the HS Series handle option.

natural fit

control

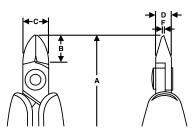
80 Series Features + Overall handle length is increased by more than 30 mm (1.27") to avoid pressure points in palm.

HS handles can be added to any 80 Series or Supreme Series cutter or pliers. Continued research by Lindström into ergonomic principals, after partnering with a design firm in Sweden and ergonomic experts at the University of Michigan, eventually led to the RX Series design.

But it all started with HandSaver handles, which are still very popular and available to customers who specify them.

Diagonal Cutters

Oval Head


- · Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- · Cutting capacity is listed for solid copper wire
- Black Oxide finish

Ultra-Flush

jewelry wire, and general assembly applications 🥳

RX Series:

Micro-Bevel®

Flush

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	A	$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in	$\overset{\bigstar}{\frown}$	g	Ω
RX 8130	Oval	XS	133.5 / 5.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.2-1.0 / 0.00	Micro-Bevel®	68	Dissipative
RX 8131	Oval	XS	133.5 / 5.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-1.0 / 0.00	Flush	68	Dissipative
RX 8132	Oval	XS	133.5 / 5.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.00-0.03	Ultra-Flush®	68	Dissipative
RX 8140	Oval	S	135.5 / 5.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.00-0.05	Micro-Bevel®	70	Dissipative
RX 8141	Oval	S	135.5 / 5.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.25 / 0.00-0.05	Flush	70	Dissipative
RX 8142	Oval	S	135.5 / 5.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Ultra-Flush®	70	Dissipative
RX 8150	Oval	Μ	138.0 / 5.43	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	73	Dissipative
RX 8151	Oval	Μ	138.0 / 5.43	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.00-0.06	Flush	73	Dissipative
RX 8152	Oval	Μ	138.0 / 5.43	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.25 / 0.00-0.05	Ultra-Flush®	73	Dissipative
RX 8160	Oval	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02	Micro-Bevel®	97	Dissipative
RX 8161	Oval	L	147.0 / 5.80	16.0/0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01	Flush	97	Dissipative
RX 8162	Oval	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.6 / 0.01	Ultra-Flush®	97	Dissipative

Oval Head

80 Series:

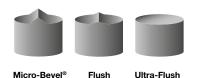
ESD safe synthetic mono material with leaf springs

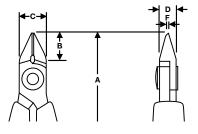
Part No.	$\widehat{\mathbb{O}}$	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in	$\overset{\bigstar}{\frown}$	g	Ω
8130	Oval	XS	108.0 / 4.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.2-1.0 / 0.01-0.04	Micro-Bevel®	43	Dissipative
8131	Oval	XS	108.0 / 4.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Flush	43	Dissipative
8132	Oval	XS	108.0 / 4.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.00-0.03	Ultra-Flush®	43	Dissipative
8140	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	46	Dissipative
8141	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.25 / 0.00-0.05	Flush	46	Dissipative
8142	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Ultra-Flush®	46	Dissipative
8150	Oval	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	50	Dissipative
8151	Oval	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	50	Dissipative
8152	Oval	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.1-1.25 / 0.00-0.05	Ultra-Flush®	50	Dissipative
8160	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	88	Dissipative
8161	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	88	Dissipative
8162	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.6 / 0.01-0.08	Ultra-Flush®	88	Dissipative
8131 CO	Oval	XS	108.0 / 4.25	8.5 / 0.33	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Flush	43	Conductive
8140 CO	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	46	Conductive
8141 CO	Oval	S	110.0 / 4.33	1.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.25 / 0.00-0.05	Flush	46	Conductive
8142 CO	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Ultra-Flush®	46	Conductive
8150 CO	Oval	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	50	Conductive
8151 CO	Oval	М	112.5 / 4.43	12.5 / 0.50	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	50	Conductive
8160 CO	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	88	Conductive
8161 CO	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	88	Conductive

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.		←Â→	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	(II) mm / in		g	Ω
HS 8130	Oval	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	91	Dissipative
HS 8131	Oval	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-1.25 / 0.01-0.05	Flush	91	Dissipative
HS 8132	Oval	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.01-0.03	Ultra-Flush®	91	Dissipative
HS 8140	Oval	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	92	Dissipative
HS 8141	Oval	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.25 / 0.01-0.05	Flush	92	Dissipative
HS 8142	Oval	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.01-0.04	Ultra-Flush®	92	Dissipative
HS 8150	Oval	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	98	Dissipative
HS8151	Oval	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	98	Dissipative
HS8152	Oval	Μ	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.1-1.25 / 0.01-0.05	Ultra-Flush®	98	Dissipative
HS 8160	Oval	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	136	Dissipative
HS 8161	Oval	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	136	Dissipative
HS 8162	Oval	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Ultra-Flush®	136	Dissipative


Tapered Head


- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Ideal for assembly work where accessibility is a consideration

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch™: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	$\widehat{\mathbf{a}}$	←♣→	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in		g	Ω
RX8133	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.2-1.0 / 0.008-0.04	Micro-Bevel®	66	Dissipative
RX8134	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Flush	66	Dissipative
RX8135	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.5 / 0.004-0.02	Ultra-Flush®	66	Dissipative
RX 8143	Tapered	S	135.5 / 5.25	10.5 / 0.41	8.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	68	Dissipative
RX 8144	Tapered	S	135.5 / 5.25	10.5 / 0.41	8.0 / 0.39	6.0/0.24	0.8 / 0.03	0.1-1.25 / 0.00-0.05	Flush	68	Dissipative
RX 8145	Tapered	S	135.5 / 5.25	10.5 / 0.41	8.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Ultra-Flush®	68	Dissipative
RX 8153	Tapered	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0/0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	71	Dissipative
RX 8154	Tapered	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0/0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	71	Dissipative
RX8155	Tapered	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.25 / 0.01-0.05	Ultra-Flush®	71	Dissipative
RX8163	Tapered	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	95	Dissipative
RX 8164	Tapered	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	95	Dissipative
RX 8165	Tapered	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.6 / 0.01-0.06	Ultra-Flush®	95	Dissipative

Tapered Head

80 Series

ESD safe synthetic mono material with leaf springs

Part No.	$\widehat{\mathbf{a}}$	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	(II) mm / in		g	Ω
8133	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0/0.2	0.8 / 0.03	0.2-1.0 / 0.008-0.04	Micro-Bevel®	43	Dissipative
8134	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Flush	43	Dissipative
8135	Tapered	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.5 / 0.004-0.02	Ultra-Flush®	43	Dissipative
8143	Tapered	S	110.0 / 4.33	10.5 / 0.41	8.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	46	Dissipative
8144	Tapered	S	110.0 / 4.33	10.5 / 0.41	8.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Flush	46	Dissipative
8145	Tapered	S	110.0 / 4.33	10.5 / 0.41	8.0 / 0.39	6.0/0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Ultra-Flush®	46	Dissipative
8153	Tapered	Μ	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	Micro-Bevel®	49	Dissipative
8154	Tapered	Μ	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	49	Dissipative
8155	Tapered	Μ	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.25 / 0.01-0.05	Ultra-Flush®	49	Dissipative
8163	Tapered	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	88	Dissipative
8164	Tapered	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	88	Dissipative
8165	Tapered	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.6 / 0.01-0.06	Ultra-Flush®	88	Dissipative
8144 CO	Tapered	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Flush	46	Conductive
8154 CO	Tapered	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0/0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	49	Conductive
8163 CO	Tapered	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	Micro-Bevel®	88	Conductive
8165 CO	Tapered	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.6 / 0.01-0.06	Ultra-Flush®	88	Conductive

Supreme Series:

ESD safe synthetic mono material with leaf springs Natural finish

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	۲ mm / in	$\overset{\bigstar}{\frown}$	g	Ω
7190	Tapered	S	108.0 / 4.29	9.0 / 0.35	9.0 / 0.35	6.0/0.24	1.0 / 0.04	0.2-1.0 / 0.00-0.04	Micro-Bevel®	50	Dissipative
7191	Tapered	S	108.0 / 4.29	9.0 / 0.35	9.0 / 0.35	6.0/0.24	1.0 / 0.04	0.1-1.0 / 0.00-0.04	Flush	50	Dissipative
7190 CO	Tapered	S	108.0 / 4.29	9.0 / 0.35	9.0 / 0.35	6.0/0.24	1.0 / 0.04	0.2-1.0 / 0.00-0.04	Micro-Bevel®	50	Conductive
7191 CO	Tapered	S	108.0/4.29	9.0 / 0.35	9.0 / 0.35	6.0/0.24	1.0 / 0.04	0.1-1.0 / 0.00-0.04	Flush	50	Conductive

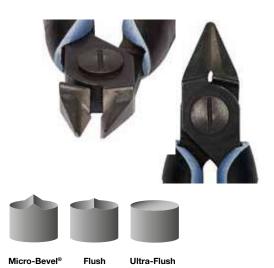
HS Series:

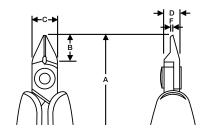
Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	۲ mm / in		g	Ω
HS8133	Tapered	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.2-1.0 / 0.008-0.04	Micro-Bevel®	91	Dissipative
HS8134	Tapered	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Flush	91	Dissipative
HS8135	Tapered	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.5 / 0.00-0.02	Ultra-Flush®	91	Dissipative
HS 8143	Tapered	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Micro-Bevel®	91	Dissipative
HS 8144	Tapered	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	Flush	91	Dissipative
HS 8145	Tapered	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.01-0.04	Ultra-Flush®	91	Dissipative
HS8153	Tapered	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.3–1.6 / 0.01–0.06	Micro-Bevel®	97	Dissipative
HS8154	Tapered	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.6 / 0.01-0.06	Flush	97	Dissipative
HS8155	Tapered	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.2-1.25 / 0.01-0.05	Ultra-Flush®	97	Dissipative
HS 8163	Tapered	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Micro-Bevel®	136	Dissipative
HS 8164	Tapered	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-2.0 / 0.01-0.08	Flush	136	Dissipative
HS8165	Tapered	L	157.3 / 6.19	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3–1.6 / 0.01–0.06	Ultra-Flush®	136	Dissipative

ESD

80 Series




Tapered & Relieved Head

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Ideal for use in confined spaces and for rework

ergo

RX Series

ergo

RX Series

Lindström

Unique Head

RX Series:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	A	$\leftarrow \bigoplus_{i \in \mathcal{I}} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in	$\overset{\bigstar}{\frown}$	g	Ω
RX8136	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Micro-Bevel®	66	Dissipative
RX 8137	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Flush	66	Dissipative
RX8138	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.5 / 0.004-0.02	Ultra-Flush®	66	Dissipative
RX 8146	Tapered & Relieved	S	135.5 / 5.25	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.0 / 0.01-0.04	Micro-Bevel®	68	Dissipative
RX 8147	Tapered & Relieved	S	135.5 / 5.25	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	Flush	68	Dissipative
RX 8148	Tapered & Relieved	S	135.5 / 5.25	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-0.8 / 0.00-0.03	Ultra-Flush®	68	Dissipative
RX 8156	Tapered & Relieved	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2/0.05	0.3-1.25 / 0.01-0.05	Ultra-Flush®	70	Dissipative
RX 8157	Tapered & Relieved	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2/0.05	0.2-1.25 / 0.01-0.05	Flush	70	Dissipative
RX 8158	Tapered & Relieved	М	138.0 / 5.30	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2/0.05	0.2-1.0 / 0.01-0.04	Ultra-Flush®	70	Dissipative
RX8166	Tapered & Relieved	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-1.5 / 0.02-0.06	Micro-Bevel®	139	Dissipative
RX 8167	Tapered & Relieved	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.5 / 0.01-0.06	Flush	139	Dissipative
RX 8168	Tapered & Relieved	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.25 / 0.01-0.05	Ultra-Flush®	139	Dissipative

RX Series: EXTRA SLIM HEAD

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	۲ mm / in		g	Ω
RX8137MX	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.1 / 0.0	0.1-0.8 / 0.004-0.03	Flush	66	Dissipative
RX8138MX	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.1 / 0.0	0.1-0.8 / 0.004-0.03	Ultra-Flush®	66	Dissipative

Unique cutting heads developed together with specific end-user to solve critical applications

Tapered & Relieved Head

ESD safe synthetic mono material with leaf springs

Part No.		$\leftarrow \bigoplus_{\psi} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	۲ mm / in	$\overset{\bigstar}{\frown}$	g	Ω
8136	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.6 / 0.02	0.1-0.8 / 0.004-0.03	Micro-Bevel®	43	Dissipative
8137	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.6 / 0.02	0.1-0.8 / 0.004-0.03	Flush	43	Dissipative
8138	Tapered & Relieved	XS	108.0 / 4.25	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.6 / 0.02	0.1-0.5 / 0.004-0.02	Ultra-Flush®	43	Dissipative
8146	Tapered & Relieved	S	110.5 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.0 / 0.01-0.04	Micro-Bevel®	46	Dissipative
8147	Tapered & Relieved	S	110.5 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0/0.24	0.8 / 0.03	0.1-1.0 / 0.01-0.04	Flush	46	Dissipative
8148	Tapered & Relieved	S	110.5 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0/0.24	0.8 / 0.03	0.1-0.8 / 0.00-0.03	Ultra-Flush®	45	Dissipative
8156	Tapered & Relieved	М	112.5 / 4.43	12.5 / 0.5	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3-1.25 / 0.01-0.05	Micro-Bevel®	49	Dissipative
8157	Tapered & Relieved	М	112.5 / 4.43	12.5 / 0.5	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.25 / 0.01-0.05	Flush	49	Dissipative
8158	Tapered & Relieved	М	112.5 / 4.43	12.5 / 0.5	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.2-1.0 / 0.01-0.04	Ultra-Flush®	49	Dissipative
8166L	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-1.5 / 0.02-0.06	Micro-Bevel®	52	Dissipative
8167L	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.5 / 0.01-0.06	Flush	52	Dissipative
8168L	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.25 / 0.01-0.05	Ultra-Flush®	51	Dissipative
8148 CO	Tapered & Relieved	S	110.0 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-0.8 / 0.00-0.03	Ultra-Flush®	45	Conductive

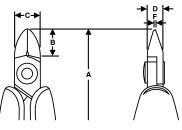
HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.		$\leftarrow \bigoplus_{\downarrow}^{\wedge} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	(۲) mm / in	$\overset{\bigstar}{\frown}$	g	Ω
HS8136	Tapered & Relieved	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Micro-Bevel®	91	Dissipative
HS8137	Tapered & Relieved	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.8 / 0.004-0.03	Flush	91	Dissipative
HS8138	Tapered & Relieved	XS	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	5.0 / 0.2	0.8 / 0.03	0.1-0.5 / 0.004-0.02	Ultra-Flush®	91	Dissipative
HS8146	Tapered & Relieved	S	5.60 / 142.3	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.0 / 0.01-0.04	Micro-Bevel®	91	Dissipative
HS8147	Tapered & Relieved	S	5.60 / 142.3	10.0 / 0.39	10.0/0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.01-0.04	Flush	91	Dissipative
HS 8148	Tapered & Relieved	S	5.60 / 142.3	10.0 / 0.39	10.0/0.39	6.0 / 0.24	0.8 / 0.03	0.1–0.8 / 0.01–0.03	Ultra-Flush®	90	Dissipative
HS8156	Tapered & Relieved	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.0 / 0.04	0.3-1.25 / 0.01-0.05	Micro-Bevel®	97	Dissipative
HS8157	Tapered & Relieved	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.0 / 0.04	0.2-1.25 / 0.01-0.05	Flush	97	Dissipative
HS8158	Tapered & Relieved	М	144.8 / 5.70	12.5 / 0.5	12.5 / 0.49	6.0 / 0.24	1.0 / 0.04	0.2-1.0 / 0.01-0.04	Ultra-Flush®	97	Dissipative
HS8166	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0/0.63	8.0 / 0.31	1.6 / 0.06	0.4-1.5 / 0.02-0.06	Micro-Bevel®	139	Dissipative
HS8167	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0/0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.5 / 0.01-0.06	Flush	139	Dissipative
HS8168	Tapered & Relieved	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3-1.25 / 0.01-0.05	Ultra-Flush®	139	Dissipative

80 Series

Stripping Head


- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

8150 SK **Stripping Capacity:** > 0,9 - 1,8 mm

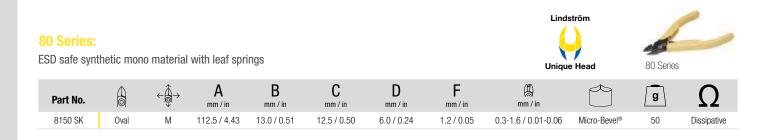
Ideal for wire harness work 6 standard printed circuit board assembly Also valid for stripping

80 Series

Lindström

Unique Head

8160 J


Stripping Capacity: > 0,5 mm

Micro-Bevel®

80 Series:

ESD safe synthetic mono material with leaf springs

Part No.		$\leftarrow \underset{\vee}{ \underset{\vee}{ \underset{\vee}{ \underset{\vee}{ \underset{\vee}{ \atop)}}}} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in		g	Ω
8150 J	Oval	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	Max / 0.5	Micro-Bevel®	50	Dissipative
8160 J	Oval	L	125.0 / 4.92	16.0 / 0.62	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	Max / 0.5	Micro-Bevel®	87	Dissipative

Unique cutting heads developed together with specific end-user to solve critical applications

Designed for Hard Wire Applications

N

7154TC Carbide Insert Cutter

- Carbide Insert Cutters suitable for hard wire materials such as Nitinol, Stainless Steel, Platinum and Titanium
- · High performance alloy steel material provides strength and reliability
- · Precision lap joint with screw minimizes friction while maximizing cutting edge and tip alignment
- ESD Safe, comfortable synthetic handles with return spring for smooth operation
- · Polished, natural finish provides protection against oxidation
- Cutting capacity hard wire from 0.10 mm to 0.40 mm / 0.004 in to 0.016 in. And when tip cutting max 0.2 mm / 0.008 in
- 8154PSP designed for soft materials

Fine Trimming of Stents 🥳

Lindström

🤃 Designed to Cut

Guidewires, Catheters &

Carbide Insert: ESD safe synthetic mono material with leaf springs

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	Soft Wire Cap. mm / in	Hard Wire Cap. mm / in		Ω
7154TC	Tapered	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	2.0 / 0.08	0.1-0.9 / 0.004-0.03	0.1-0.4 / 0.004-0.02	Flush	Dissipative
8154PSP	Tapered	М	112.5 / 4.43	13.0 / 0.51	12.5 / 0.49	6.0/0.24	2.0 / 0.08	0.2-1.6 / 0.01-0.06	-	Flush	Dissipative

Unique cutting heads developed together with specific end-user to solve critical applications

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

M2 Series

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	Soft Wire Cap. mm / inch	Hard Wire Cap. mm / inch	$\overset{\bigstar}{\frown}$	Ω
RX8140M2	Oval	S	135.5 / 5.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Micro-Bevel®	Dissipative
RX8150M2	Oval	М	138.0 / 5.43	13.0 / 0.51	12.5 / 0.49	6.0 / 0.24	1.2 / 0.05	0.3-1.6 / 0.01-0.06	0.2-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
RX8160M2	Oval	L	147.0 / 5.80	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	0.3-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative

M2:

ESD safe synthetic mono material with leaf springs

Part No.		$\leftarrow \bigoplus_{\downarrow}^{\bigwedge} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in	Soft Wire Cap. mm / inch	Hard Wire Cap. mm / inch		Ω
8140M2	Oval	S	110.0 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Micro-Bevel®	Dissipative
8150M2	Oval	Μ	112.5 / 4.43	12.5 / 0.50	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3–1.6 / 0.01–0.06	0.2-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
8160 M2	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.4–2.0 / 0.02–0.08	0.3-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative

Performance Specific Series

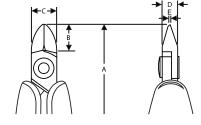
- Sharp and fully aligned edges
- Numerically controlled machining guarantees edge angle accuracy and contact, increasing the tools reliability and consistency
- Produced using high performance alloy steel material provides strength and reliability
- Induction hardening technique and modified cutting edges deliver precise cuts
- · Precision screw joint minimizes friction while maximizing cutting edge and tip alignment
- ESD safe, comfortable synthetic handles with return springs for smooth operation
- Phosphate finish provides protection against oxidation and reduces glare under illumination

RX Series:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

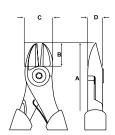
Part No.	A	←Â→	A	B	C	D	E	Soft Wire Cap. mm / inch	Hard Wire Cap. mm / inch	\bigwedge	0
		\checkmark	mm / in	mm / in	mm / in	mm / in	mm / in			\bigcirc	
RX8140PS	Oval	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Micro-Bevel®	Dissipative
RX8141PS	Oval	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Flush	Dissipative
RX 8142PS	Oval	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0/0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	-	Ultra-Flush®	Dissipative
RX 8147PS	Tapered&Relieved	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Flush	Dissipative
RX8150PS	Oval	М	135.5 / 5.33	12.5 / 0.50	12.5 / 0.50	6.0/0.24	1.2 / 0.05	0.3–1.6 / 0.01–0.06	0.2-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
RX8160BPS	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3–2.0 / 0.01–0.08	0.3-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
RX 8161PS	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3–2.0 / 0.01–0.08	0.3-0.8 / 0.01-0.03	Flush	Dissipative


Electrical & Electronic Medical Diagnostic Equipment and Instruments

PS:

ESD safe synthetic mono material with leaf springs

Part No.	A	$\leftarrow \bigoplus_{\downarrow}^{} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	Soft Wire Cap. mm / inch	Hard Wire Cap. mm / inch		Ω
8140PS	Oval	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Micro-Bevel®	Dissipative
8141PS	Oval	S	112.5 / 4.43	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.2-1.25 / 0.01-0.05	0.2-0.5 / 0.01-0.02	Flush	Dissipative
RX 8142PS	Oval	S	110.0 / 4.33	10.5 / 0.41	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0 / 0.00-0.04	-	Ultra-Flush®	Dissipative
RX 8147PS	Tapered & Relieved	S	110.5 / 4.33	10.0 / 0.39	10.0 / 0.39	6.0 / 0.24	0.8 / 0.03	0.1-1.0/0.01-0.04	-	Flush	Dissipative
8150PS	Oval	М	135.5 / 5.33	12.5 / 0.50	12.5 / 0.50	6.0 / 0.24	1.2 / 0.05	0.3–1.6 / 0.01–0.06	0.2-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
8160PS	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3–2.0 / 0.01–0.08	0.3-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
RX8160BPS	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	10.0 / 0.31	1.6 / 0.06	0.4-2.0 / 0.02-0.08	0.3-0.8 / 0.01-0.03	Micro-Bevel®	Dissipative
8161PS	Oval	L	125.0 / 4.92	16.0 / 0.63	16.0 / 0.63	8.0 / 0.31	1.6 / 0.06	0.3–2.0 / 0.01–0.08	0.3-0.8 / 0.01-0.03	Flush	Dissipative


RX Series

PS Series

ERGO™ Precision Diagonal Plastic Cutters

- ERGO[™] Precision Diagonal Plastic Cutters
- Developed according to the ERGO® process for a comfortable and effective grip in all situations
- · Rivet joint that minimises friction and maximises jaw alignment
- ESD safe handles in 2-component synthetic material
- On/off spring enables reduced profile for easy storage
- Extremely strong construction for long lasting performance
- Designed to produce a Flush cut result on plastic, nylon and cabled wire applications

Flush

ERGO Side Cutter:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

Part No.		←⊕→	A mm / in	B mm / in	C mm / in	D mm / in) mm / in	mm / in		g
P6160	Oval	L	160.0 / 6.3	18.0 / 0.7	21.5 / 0.85	10.0 / 0.39	1.5 / 0.059	3.0/0.118	Flush	162

►LINDSTRÖM^{*}

Heavy Duty Diagonal Cutters

- Developed according to the ERG0[®] process for a comfortable and effective grip in all situations
- Progressive bevel cutting edge: The cutting bevel progresses along the edge in order to cut soft and thin material at the tip. Hard and thick material close to the joint
- Rivet joint minimises friction and maximises jaw alignment
- Cutting edges hardened to 63-65 HRC for durable performance
- High leverage joint to reduce cutting force
- Equipped with a return spring featuring an on/off function
- High performance alloy steel

Flush

• Black Oxide finish and anti-corrosion treated

Progressive Micro-Bevel® cutting edge

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	∰ mm / in	(∰) mm / in	(A) mm / in		g
TRX 8180	Oval	L	210.0 / 8.26	21.0 / 0.82	29.0 / 1.141	11.0 / 0.433	4.5 / 0.177	3.0 / 0.118	2.5 / 0.10	Progressive Bevel	304

Progressive Bevel technology for both soft and hard wire applications

►LINDSTRÖM

Multipurpose Shear

- User-friendly, durable and fits comfortably in either hand
- High carbon steel blades with a hardness of 57-59 HRC
- Serrations on one cutting edge to prevent the material being cut from sliding away (HS6000)
- Precision screw joint that minimises friction and maximises alignment of cutting edges
- ESD safe non-slip, foam cushioned grips

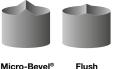
HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

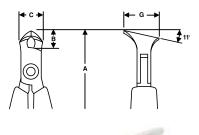
Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	D mm / in	1		g	Ω
HS6000	Serrated-Jaws	L	145.0 / 5.7	29.0 / 1.1	6.4 / 0.2	Serrated	Kevlar	88	Dissipative
HS6001	Smooth-Jaws	L	145.0 / 5.7	29.0 / 1.1	6.4 / 0.2	Smooth	Kevlar	88	Dissipative

Oblique Cutters

es


11° Oblique Head

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- · Cutting capacity is listed for solid copper wire
- Natural finish


🥦 Durable, robust cutting blade design 11 Degree angle ideal for confined space access Excellent for rework and close assembly applications 夭

Micro-Bevel®

Supreme Series:

ESD safe synthetic mono material with leaf springs Natural finish

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm∕in	C mm / in	G mm / in	mm / in		g	Ω
7290	End	S	108.0 / 4.25	8.0 / 0.31	10.5 / 0.41	15.0 / 0.59	0.35-1.25 / 0.01-0.05	Micro-Bevel®	56	Dissipative
7291	End	S	108.0 / 4.25	8.0 / 0.31	10.5 / 0.41	15.0/0.59	0.35-1.25 / 0.01-0.05	Flush	56	Dissipative

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue. Black Oxide finish

Part No.	A	$\leftarrow \bigoplus_{i \neq j} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	(II) mm / in		g	Ω
HS7290	End	S	140.3 / 5.52	8.0 / 0.31	8.0 / 0.31	15.0 / 0.59	15.0 / 0.59	0.35-1.25 / 0.01-0.05	Micro-Bevel®	103	Dissipative
HS7291	End	S	140.3 / 5.52	8.0 / 0.31	10.5 / 0.41	15.0 / 0.59	15.0 / 0.59	0.35-1.25 / 0.01-0.05	Flush	103	Dissipative

Miniature End Cutter

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Natural finish

Flush

Supreme Series:

ESD safe synthetic mono material with leaf springs Natural finish

Â	
-	-

Supreme Series

HS Series

Part No.	\bigcirc	$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in) mm / in		g	Ω
7292	End	S	117.5 / 4.53	15.0 / 0.59	9.0 / 0.35	6.0 / 0.24	3.2 / 0.13	4.0 / 0.16	0.35-0.8 / 0.01-0.03	Flush	10	Dissipative

Thin Tip: FOR EXTRA ACCESS	IBILITY	(Lindström
7292G End	S	117.5 / 4.53	15.0 / 0.59	9.0 / 0.35	6.0 / 0.24	2.3 / 0.09	4.0 / 0.16	0.35-0.8 / 0.01-0.03	Flush	10	Dissipative

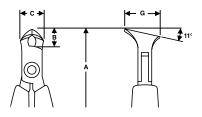
Unique cutting heads developed together with specific end-user to solve critical applications

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue. Black Oxide finish

Part No.		←Â→	A	B	С	D	E	F	A		g	0
	191	\checkmark	mm / in	mm / in	mm / in	mm / in	mm / in	mm / in	mm / in	\bigcirc		
HS7292	End	S	147.3 / 5.80	15.0 / 0.59	9.0 / 0.35	6.0 / 0.24	3.2 / 0.13	4.0 / 0.16	0.1-1.0 / 0.01-0.03	Flush	101	Dissipative

11° Oblique End Cutter, Short Blade


- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Durable, robust cutting blade design 11 Degree angle ideal for confined space access

Excellent for rework and close assembly applications

Supreme Series

Flush

Supreme Series:

ESD safe synthetic mono material with leaf springs Natural finish

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	G mm / in	۲ mm / in		g	Ω
7293	End	S	108 / 4.25	8.0 / 0.31	10.5 / 0.41	8.0 / 0.31	0.35-1.0 / 0.01-0.04	Flush	56	Dissipative

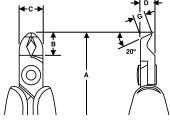
HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

0

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	G mm / in	لللم mm / in		g	Ω
HS7293	End	S	140.3 / 5.52	8.0 / 0.31	10.5 / 0.41	8.0 / 0.31	0.35-1.0 / 0.01-0.04	Flush	103	Dissipative

Oblique - Angle Cutters


20° Short Head

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Ideal for assembly and rework where accessibility is a consideration

Flush

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

ergo"	0
-	-
RX Series	

Part No.	$\widehat{\Box}$	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in) mm / in		g	Ω
RX 8211	Angle 20°	S	134.5 / 5.29	9.5 / 0.37	10.0 / 0.39	6.0/0.24	4.1 / 0.16	0.2-1.2 / 0.01-0.05	Flush	70	Dissipative

80 Series:

ESD safe syn	SD safe synthetic mono material with leaf springs									80 Series	
Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in) mm / in		g	Ω
8211	Angle 20°	S	110.0 / 4.33	9.5 / 0.37	10.0 / 0.39	6.0/0.24	4.1 / 0.16	0.2-1.2 / 0.01-0.05	Flush	43	Dissipative

HS Series: Long, foam c		dles provi	de added leve	erage, an erg	onomic grip, a	nd reduced fa	tigue		ŀ	IS Series	-
Part No.	A	$\leftarrow \bigoplus_{i \neq j} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in) mm / in		g	Ω
HS8211	Angle 20°	L	142.3 / 5.60	9.5 / 0.37	10.0 / 0.39	8.0 / 0.31	4.1 / 0.16	0.2-1.2 / 0.01-0.05	Flush	91	Dissipative

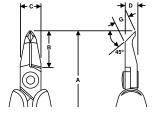
45° Tapered Head

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Flush

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip


- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	A	$\leftarrow \bigoplus_{\mathbb{Q}}^{\wedge} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	۲ mm / in		g	Ω
RX 8247	Angle 45°	S	143.0 / 5.63	18.0 / 0.71	10.0 / 0.39	6.0 / 0.24	6.7 / 0.26	0.2-1.0/0.01-0.04	Flush	72	Dissipative

~~	• •	
XU.	Sor	00'
00	0011	63.

ESD safe syn	ESD safe synthetic mono material with leaf springs 80											
Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	(II) mm / in		g	Ω	
8247	Angle 45°	S	117.5 / 4.63	18.0 / 0.71	10.0 / 0.39	6.0 / 0.24	6.7 / 0.26	0.2-1.0/0.01-0.04	Flush	51	Dissipative	
8247 CO	Angle 45°	S	117.5 / 4.63	18.0 / 0.71	10.0 / 0.39	6.0 / 0.24	6.7 / 0.26	0.2-1.0 / 0.01-0.04	Flush	51	Conductive	



HS Series:

45° Tapered & Relieved Head

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

Flush

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		$\leftarrow \widehat{\bigoplus} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in) mm / in		g	Ω
RX 8248	Angle 45°	S	143.0 / 5.63	18.0 / 0.71	10.0 / 0.39	6.0/0.24	6.7 / 0.26	0.2-0.8 / 0.01-0.03	Flush	72	Dissipative

80 Series:

ESD safe synthetic mono material with leaf springs

Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	۲ mm / in		g	Ω
8248	Angle 45°	S	117.5 / 4.63	18.0 / 0.71	10.0 / 0.39	6.0 / 0.24	6.7 / 0.26	0.2-0.8 / 0.01-0.03	Flush	51	Dissipative
8249	Angle 45°	S	117.5 / 4.63	18.0 / 0.71	10.0 / 0.39	6.0/0.24	6.4 / 0.25	0.2-0.8 / 0.01-0.03	Flush	51	Dissipative
8248 CO	Angle 45°	S	117.5 / 4.63	18.0 / 0.71	10.0 / 0.39	6.0/0.24	6.7 / 0.26	0.2-0.8 / 0.01-0.03	Flush	51	Conductive

80 Series:

EXTRA		
EXINA	LUNG	ΠΕΑυ

										Uniq	ие пеао
8248Q	Angle 45°	S	117.5 / 4.63	18.0/0.71	10.0 / 0.39	6.0 / 0.24	7.5 / 0.29	0.2-0.8 / 0.00-0.03	Ultra-Flush®	51	Dissipative
Unique cutting hea	ads developed toge	ether with s	specific end-user to	solve critical appli	ications						

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

										110 001100	
Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in) mm / in		g	Ω
HS 8248	Angle 45°	L	149.8 / 5.90	18.0 / 0.71	10.0 / 0.39	8.0 / 0.31	6.7 / 0.26	0.2-0.8 / 0.01-0.03	Flush	99	Dissipative

80 Series

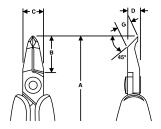
HS Serie

Lindström

Reverse Angle

- · Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- · Cutting capacity is listed for solid copper wire
- Black Oxide finish

Flush


Supreme Series:

ESD safe mono material handles in synthetic material with leaf springs Natural finish

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.	\bigcirc	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	لیے mm / in		g	Ω
7280	Angle 45°	S	120.0 / 4.72	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	3.5 / 0.14	0.2-08 / 0.01-0.03	Flush	56	Dissipative
HS7280	Angle 45°	S	150.3 / 5.91	18.0/0.71	9.0 / 0.35	6.0 / 0.24	3.5 / 0.14	0.2-0.8 / 0.01-0.03	Flush	102	Dissipative

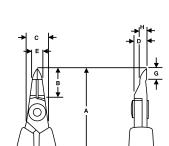
Supreme Series:

ESD safe mono material handles in synthetic material with leaf springs Natural finish

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.	\bigcirc	$\leftarrow \bigoplus_{\downarrow}^{\wedge} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	(II) mm / in		g	Ω
7285	Angle 45°	S	120.0 / 4.72	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	6.0 / 0.26	0.2-1.0 / 0.01-0.04	Flush	56	Dissipative
HS7285	Angle 45°	S	152.3 / 5.99	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	6.0 / 0.26	0.2-1.0 / 0.01-0.04	Flush	103	Dissipative


Tip & Micro Tip Cutters

0

Tip Cutter

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Precision induction hardened cutting edges 63-65 HRC
- Material: High performance alloy steel
- Cutting capacity is listed for solid copper wire
- Black Oxide finish

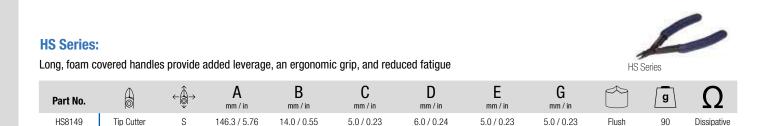
ergo

RX Series

Flush

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip


- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	A	$\leftarrow \bigoplus_{i \in \mathbb{Q}} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	G mm / in		g	Ω
RX 8149	Tip Cutter	S	139.0 / 5.47	14.0 / 0.55	10.0 / 0.39	6.0 / 0.24	5.0/0.2	5.0 / 0.2	Flush	70	Dissipative

80 Series:

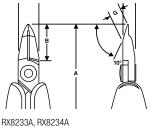
ESD safe synthetic mono material with leaf springs

LOD GUIG OJII		matorial	inter total opting	0					80 S	ieries	
Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	G mm / in		g	Ω
8149	Tip Cutter	S	114.0 / 4.49	14.0 / 0.55	5.0 / 0.23	6.0 / 0.24	5.0 / 0.23	5.0 / 0.23	Flush	48	Dissipative

►LINDSTRÖM^{*}

Micro Tip Cutter

- Developed according to the ERGO® process for a comfortable and effective grip in all situations
- Material: High performance alloy steel
- Precision induction hardened edges 63–65 HRC
- ESD safe handles in 2-component synthetic material
- · Precision screw joint minimises friction and maximises alignment of cutting edges
- Cutting capacity listed is for solid copper wire
- Black Oxide finish



RX 8237A

RX 8233A

ergo

RX Series

Flush

RX Series:

RX 8234A

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

		-									
Part No.	\bigcirc	$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	۲ mm / in		g	Ω
RX8233A	Micro Tip 10°	XS	149.0 / 5.9	22.3 / 0.87	10.6 / 0.41	7.0 / 0.27	7.2 / 0.28	0.1-0.6 / 0.004-0.024	Flush	69	Dissipative

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	۲ mm / in		g	Ω
RX8234A	Micro Tip 10°	XS	141.0 / 4.50	14.2 / 0.56	10.6 / 0.41	7.0 / 0.27	3.2 / 0.12	0.05-0.4 / 0.002-0.018	Flush	62	Dissipative
						RX82374			ergc RX Ser	1	2
Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	G mm / in	۲ mm / in		g	Ω
RX8237A	Angle 50°	XS	144.0 / 5.6	17.4 / 0.69	10.6 / 0.41	7.0 / 0.27	4.1 / 0.16	0.1-0.5 / 0.004-0.02	Flush	65	Dissipative

Precision Holding Pliers

Flat Nose

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Polished and tough hardened 55-58 HRC
- Material: High performance alloy steel
- Natural finish

 Flat square shape with parallel jaws provide the best surface area of standard pliers shapes
 Favored by chainmaille artists

Smooth Flat Nose

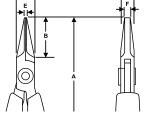
RX Series:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		←⊕→	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in		g	Ω
RX 7390	Flat Nose Stubby	S	137.0 / 5.40	11.0/0.43	10.0 / 0.39	6.0 / 0.24	6.0 / 0.24	0.8 / 0.07	Smooth	70	Dissipative
RX 7392	Oblique, Stubby	S	137.0 / 5.40	12.0/0.48	10.0 / 0.39	6.0 / 0.24	6.0 / 0.24	1.6 / 0.07	Smooth	70	Dissipative
RX 7490	Flat Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.7 / 0.26	1.2 / 0.05	3.2 / 0.12	Smooth	70	Dissipative

Supreme Series:


ESD safe synthetic mono material with leaf springs

Part No.	A	$\leftarrow \underset{\Downarrow}{ \bigoplus} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in		g	Ω
7490	Flat Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	3.2 / 0.13	Smooth	70	Dissipative
7490 CO	Flat Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	3.2 / 0.13	Smooth	53	Conductive

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	F mm / in) mm / in	1	g	Ω
HS7490	Flat Nose	S	152.3 / 5.99	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	3.2 / 0.13	Smooth	100	Dissipative

Supreme Series

HS Series

• Polished and tough hardened 55-58 HRC • Material: High performance alloy steel

Round Nose

Natural finish

Precision Holding Pliers

🥦 • Round jaws taper from 7 mm to 1.0 mm at the tips • Handy for closing loops and the finest wire work 🛒

• Precision screw joint minimises friction and maximises alignment of cutting edges

Smooth Round Nose

RX Series:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- . Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
RX 7590	Round Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.7 / 0.26	1.4 / 0.055	0.7 / 0.027	Smooth	69	Dissipative

Supreme Series:

ESD safe synthetic mono material with leaf springs

Part No.	6	←∰→	A mm / in	В mm / in	U mm / in	D mm / in	E mm / in	F mm∕in		g	$\mathbf{\Omega}$
7590 F	Round Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.0/0.24	1.4 / 0.055	0.7 / 0.027	Smooth	69	Dissipative
7590 CO F	Round Nose	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.4 / 0.055	0.7 / 0.027	Smooth	54	Conductive

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

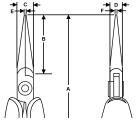
Part No.	Ð	$\leftarrow \bigwedge_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
HS 7590	Round Nose	S	152.3 / 5.99	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.4 / 0.055	0.7 / 0.027	Smooth	101	Dissipative

>LINDSTRÖM

Supreme Series

Chain Nose

- Precision screw joint minimises friction and maximises alignment of cutting edges
- Polished and tough hardened 55-58 HRC
- Material: High performance alloy steel
- Natural finish



Smooth

Designed to bend wire, these tips align like D-shaped pinchers

ergo

RX Series

Supreme Series

HS Series

RX Series:

Two-component ESD safe Ergo[™] handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-Touch[™]: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.	\bigcirc	$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
RX 7890	Chain Nose	S	158.5 / 6.24	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	72	Dissipative
RX 7891	Chain Nose	S	158.5 / 6.24	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Serrated	72	Dissipative

Supreme Series:

ESD safe synthetic mono material with leaf springs

Part No.	Ð	$\leftarrow \bigoplus_{i \in \mathcal{I}} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
7890	Chain Nose	Μ	132.0 / 5.20	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	72	Dissipative
7891	Chain Nose	Μ	132.0 / 5.20	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Serrated	72	Dissipative
7890 CO	Chain Nose	М	132.0 / 5.20	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	60	Conductive
7891 CO	Chain Nose	М	132.0 / 5.20	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Serrated	59	Conductive

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.	$\widehat{\Box}$	$\leftarrow \bigoplus_{\downarrow}^{\widehat{\mathbb{A}}} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
HS 7890	Chain Nose	М	164.3 / 6.47	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	105	Dissipative
HS 7891	Chain Nose	М	164.3 / 6.47	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Serrated	106	Dissipative

Precision Holding Pliers

Bent Nose

- 60° Bent Tip Snipe Nose Pliers with Dual-Component Synthetic Handle
- Precision screw joint minimises friction and maximises alignment of cutting edges
- Polished and tough hardened 55-58 HRC
- Material: High performance alloy steel
- Natural finish

• Classic variation of the chain nose, with 60° bend at the tips • Suited for positioning components or precise chain work 🥳

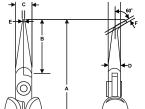
RX Series:

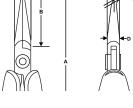
Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- · Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
RX 7892	Bent Nose	М	155.5/6.12	29.0/1.14	9.0 / 0.35	6.7 / 0.26	1.2 / 0.05	0.8 / 0.03	Smooth	73	Dissipative

HS Series


Supreme Series: ESD safe synthetic mono material with leaf springs

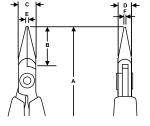

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
7892	Bent Nose	М	129.0 / 5.08	29.0 / 1.14	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	73	Dissipative
7892 CO	Bent Nose	М	129.0 / 5.08	29.0 / 1.14	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	73	Conductive

HS Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.		$\leftarrow \bigoplus_{\downarrow} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in	M	g	Ω
HS 7892	Bent Nose	М	161.3 / 6.35	29.0 / 1.14	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	106	Dissipative

Snipe Nose


- ERGO[™] Short Snipe Nose Pliers with Dual-Component Synthetic Handle
- Developed according to the ERGO[®] process for a comfortable and effective grip in all situations
- Material: High performance alloy steel
- Polished and tough hardened 55-58 HRC
- · Precision screw joint minimises friction and maximises alignment of cutting edges

Smooth

• Used where power and torsion are paramount for the application 🥳

ergo

RX Series

HS Series

RX Series:

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- · Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
RX 7893	Snipe Nose, Short	S	146.5 / 5.77	20.0 / 0.79	9.0 / 0.35	6.7 / 0.26	1.2 / 0.05	0.8 / 0.03	Smooth	71	Dissipative

ESD safe synthetic mono	material with leaf springs
-------------------------	----------------------------

Serrated

Part No.	\bigcirc	$\leftarrow \widehat{\bigoplus} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in	1	g	Ω
7893	Snipe Nose, Short	S	120.0 / 4.72	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	56	Dissipative
7893K	Snipe Nose, Short	S	120.0 / 4.72	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Serrated	56	Dissipative

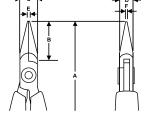
HS Series:

Supreme Series:

Long, foam covered handles provide added leverage, an ergonomic grip, and reduced fatigue

Part No.	A	$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
HS 7893	Snipe Nose, Short	S	152.3 / 5.99	20.0 / 0.79	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	103	Dissipative

►LINDSTRÖM[®]


Needle Nose

- ERGO[™] Short Needle Nose Pliers with Dual-Component Synthetic Handle
- Developed according to the ERGO® process for a comfortable and effective grip in all situations
- Material: High performance alloy steel
- Polished and tough hardened 55-58 HRC

Needle Nose

Precision screw joint minimises friction and maximises alignment of cutting edges

ergo

RX Series

RX Series:

HS Series:

Part No.

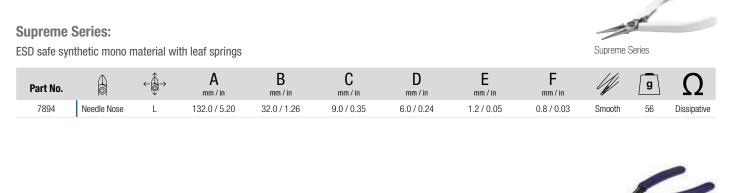
HS7894

6

Needle Nose

L

164.3 / 6.47


32.0 / 1.26

Smooth

Two-component ESD safe Ergo™ handles: Thermoplastic surface on tough polypropylene provides superior grip

- Micro-TouchTM: The shape of the handles makes it possible to control and rotate the pliers between thumb and index finger for precision work
- · Biospring reduces tension throughout the working cycle of the tool and can be adjusted in three different positions

Part No.		$\leftarrow \bigoplus_{i=1}^{n} \rightarrow$	A mm / in	B mm / in	C mm / in	D mm / in	E mm / in	F mm / in		g	Ω
RX 7894	Needle Nose	L	158.5 / 6.24	32.0 / 1.26	9.0 / 0.35	6.0 / 0.24	1.2 / 0.05	0.8 / 0.03	Smooth	70	Dissipative

1.2/0.05

0.8 / 0.03

Smooth

102

6.0/0.24

JDSTR	

9.0 / 0.35

Dissipative

Lindström

Unique Tools For Every Situation

Lindström customers are innovators, pushing the envelope, developing new technologies and building new industries. When presented with a need to prepare prototypes, insert or extract unique components, or cut proprietary hard wire, our customers turn to Lindström for Specially Engineered Tools.

Lindström has developed tools used in specialized applications for the largest names in medical device manufacturing and for small startup companies developing new technology. Every project receives the same attention to detail for a tool that is right for the job at hand.

To make the process easy Lindström has no minimum order quantity for Specially Engineered Tools. Our tool designers and manufacturers representatives work directly with production engineers to ensure success. We thrive on solving problems with our customers.

Join our www.Lindströmtools.com website in the Customise area to develop your product together with us. You can also contact one of our authorised distributors all over the world or Lindström manufacturers representatives to discuss your special tool requirements.

The Lindström Design Process

The Lindström staff can design special application tools by working with "before" and "after" components, engineering drawings, or prototypes. We even build tools drawn on the back of a napkin. It's that easy!

A customer provides an idea for a specially engineered transistor tool.

Every project begina with a blank tool.

Tools featured in this section are a small sample of over 1,500 different designs that we have manufactured so far. Several handle options are available on Specially Engineered Tools.

8154PSP precisely trims catheters.

RX331A-31 bend and cut pliers create precise two-angle bend and cuts lead the same length every time.

RX 601 forming pliers leave a standoff on the LED leads.

202A cut and clench tools leave a swaged, bent lead that clenches the PCB.

7292MI micro-mini end cutter is used to cut a ground wire inside a mini connector.

Lindström tool designer shapes the tool according to customer specifications.

Finished Transistor Forming Pliers RX 601-16 ready for delivery!

Develop Your Customised Precision Cutter

WWW.LINDSTROMTOOLS.COM

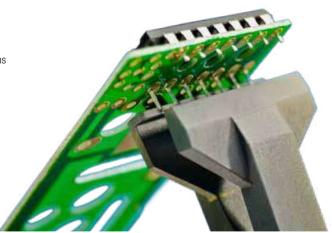
The Tool Request Form allows you to customise your product live. In a few steps you will be able to send us your request and our manufacturing reps and engineering team will respond to you to discuss your needs.

	- 1			
INDSTROM		Q Alemandar	5 . ·	
anta analista anal talitada eter		C MARLAN		
WE DEVELOP THE PLIE	technologies and building new a sut proprietary hard wire, our cu			
Understate has assessingly losses used in previously approximations for the target numeral comparison of the state of the territory. Usery approximation constants the same attributed then will be used to state the state of the state of the state of the same attributed Constants responses can user the state of the state of the state of the same attributed approximation of the state of the state of the state of the state of the same attributed We aren't build looks stratem and the back of a targetion. We that many file We aren't build looks stratem and the back of a targetion. We that many file the state of the state of the state of the state of the same attributed the same the state of the same attributed the same the state of the same attributed the same the state of the state	to defail and a foot that is signt to the pill of har or an adving prediction with our confidence (d Re		Q 4
	-	Sauteentre Dueton	and Tell Request Party	
		dara and service of the service of t		
	and the second s	second designed and the		
Lindstom Customized Tool Request Form	577.0	The design of the local division of the loca		
Enteriore Categoriana and Require Form				
And upon Down	10	1000 00000		
Rent Instant ·				
Aud-Anna Farmer				
Secretarian and an and an				
Name in Consultant on	8			
Maanse fan Stadioaalfersti jen Taats Saadskalies				
TED INVESTIGATION C.				
Service Report Registers				

IC INSERTION/EXTRACTION TOOLS & IC CUTTERS

IC Insertion/Extraction Tool

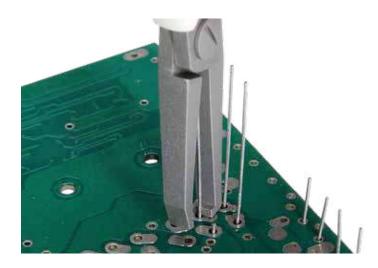
7992


- The 7990-7993 family of insertion tools can be used for ICs or DIPs from 4 pin to 64 pin
- To order, indicate total number of pins on IC/DIP, length and width of package
- Tool length: 4.5 in / 114.3 mm
- Picture shows 80 Series handle

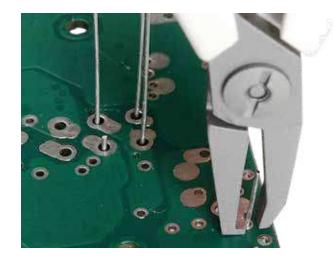
IC Cutter

RX 501

- IC cutters can be produced to cut up to 10 pins simultaneously
- Standoff length is typically 0.040 in (1 mm) but can vary according to specifications
- To order, indicate total number of pins on IC and standoff length. Example: For 14 pin IC, order Part no. 501-14
- Tool length: 6 in / 152.4 mm
- Tool can be produced with RX, 80 Series or HS handles as specified by end-user


Coaxial cable connector TOOL 801C

- Reduces possibility of marred connector threads
- Tool length: 6 in / 152.4 mm
- Picture shows ESD safe foam handle



STANDOFF CUTTERS

Straight Standoff Shear Cutter 0.075 in

- Uncut lead length capacity: 1.000 in / 25.4 mm
- Cuts leads to length as needed
- Standard length is 0.075 in (1.9 mm) but varies according to specifications
- $\bullet\,$ Cutter can be used on 18 AWG (1 mm) solid copper and also trims wire wrap pins
- To order other than 0.075 in standoff, specify length (Example: For 0.065 in standoff, order Part no. 111A-065)
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

Straight Standoff Shear Cutter 0.040 in RX112A

- Uncut lead length capacity: 0.75 in / 19 mm
- Anti-shock lead trimmer for use on 20 AWG (0.813 mm) copper wire or smaller
- Standoff is 0.040 in (1 mm) unless otherwise specified
- To order other than .040" standoff, specify length.
- Example: For 0.030 in standoff, order Part no. 112A-030)
- Tool length: 4.5 in / 114.3 mm
- Picture shows Supreme Series handle

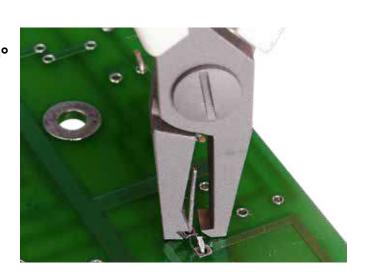
- Similar to 111A, heavy-duty type, featuring a 45° angle to allow clearance for longer lead lengths
- Standoff is 0.045 in (1.14 mm) unless otherwise specified
- To order other than 0.045 in standoff, specify length
 - (Example: For 0.035 in standoff, order Part no. 121A-035)
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle
- Tool can be produced with RX, 80 Series or HS handles as specified by end-user

000

STANDOFF CUTTERS

Oblique Stand-Off Shear Cutter HS122M.030

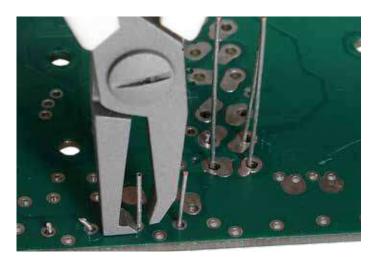
- 45° angle offers good lead visibility, does not limit lead length
- $\bullet\,$ Standard standoff is 0.060 in and can be ordered in other lengths
- To order other than 0.060 in indicate lead length as a suffix to the product code (example HS122M-080 for a stand-off of 0.080 in)
- Tool length: 6.5 in / 165.1 mm
- Picture shows HS Series handles


Straight Cut, Bend And Clench 0.060 in 20°

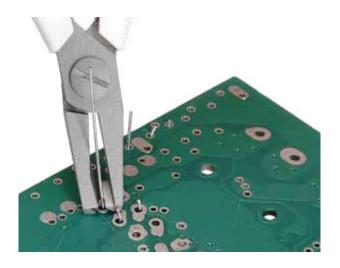
202A

- Cuts leads to 0.060 in (1.52 mm) and bends them at a 20° angle
- To order other than 0.060 in and 20° indicate, cut lead length and angle (Example: For 0.050 in length and 30° angle, order Part no. 202A-050 30°)
- Tool length: 4.5 in / 114.3 mm

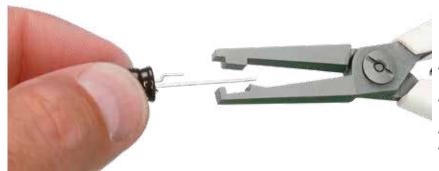
CUT and BEND


• Picture shows Supreme Series handle

Cut & Bend 0.060 in 45°


204B

- Bends leads at 45° then cuts, leaving a 0.060 in (1.52 mm) standoff
- Other angles and lengths are available
- To order other than 45° and 0.060 in, indicate degree of bend required and lead length (Example: For 40° angle and 0.050 in length, order Part no. 204B-050 40°)
- Tool length: 4.5 in / 114.3 mm
- Picture shows Supreme Series handle


CUT and BEND

Oblique Cut, Bend And Clench 0.060 in 20° 212A

- Similar to a 202A featuring an oblique angle that offers improved lead visibility and accommodates longer leads
- To order other than 0.060 in and 20°, indicate cut lead length and angle (Example: For 0.055 in length and 35° angle, order Part no. 212A-055 35°)
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

CUT and FORM

Cut And Form – Up To 18 Awg RX331A

- Cuts leads and forms dogleg on solid copper as large as 18 AGW (1 mm)
- To order, furnish component or rough drawing indicating lead length, radii, diameter and bend locations
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

Cut And Form – Up To 18 Awg

341A

- Cuts leads to length and forms stress relief on component leads up to 18 AWG (1 mm) solid copper
- To order, furnish component or rough drawing indicating lead length, radii, diameter and bend location
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

LEADFORMERS

Flat Pack Leadformer

- Cuts and forms multi-lead flat packs
- To order, indicate length from component body to bend, angle of bend and length of tail
- Tool length: 6 in / 152.4 mm
- Picture shows RX Series handle
- 29D-SA Tweezer shown holding component

601A

- · Forms leads for stress relief up to 18 AWG (1 mm) solid copper
- To order, indicate lead length (minimum/maximum) from component body to P.C. board and lead diameter
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

45° Oblique Leadformer – Unlimited Length

614A

- Adds stress relief to leads in high density board population applications
- Allows unlimited lead length forming with high visibility
- To order, indicate lead length (minimum/maximum) from component body to P.C. board and lead diameter
- Tool length: 6 in / 152.4 mm
- Picture shows Supreme Series handle

CUTTERS

Micro-mini end cutter

7292MI

- Specially engineered mini end cutter
- For micro-applications where access is a concern
- Designed to customer specifications
- Picture shows Supreme Series handle

CUSTOM FORMING PLIERS

Custom Leadformer

RX 601-16

- Specially engineered leadforming pliers
- Turns 5 equal-length leads into 3 long and 2 short leads
- Typically used on transistors
- Picture shows RX Series handle

BIOSPRING FOR RX SERIES

- Tension is kept minimal and limited thoughout the working cycle of the tool .
- Handle width is controlled for ease of tool pick-up and handling
- Tension and opening width can be adjusted according to preference via three ports
- Almost indestructible in normal use

BIOSPRING

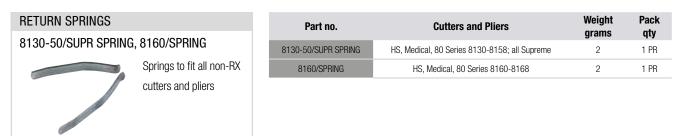
RX 01

On facing page, a spring is properly inserted for sure retention

FITS ALL RX SERIES CUTTERS AND PLIERS

RX SPRING ADJUSTMENT: 2. Place the spring in

1. Pull the tool apart the desired port 3. Close the tool


RX

RETURN SPRING FOR 80, RX, HS, MEDICAL AND SUPREME SERIES

80 HS SUP Μ

Due to the long life of 80 Series, HS Series, Medical and Supreme Series cutters and pliers, replaceable springs help reduce down time and the need to stock substitute tools

LEAD CATCHER FOR 80, RX, HS, MEDICAL AND SUPREME SERIES

- Patented lead catcher holds cut wires, preventing injury and keeping leads from flying into the assembly
- The lead catchers can be removed and reused
- Sold in packs of 5 .

LEAD CATCHER		Part no.	Cutters and Pliers	Weight grams	Pack qty
813, 814, 816	Easy to install	813	8130-8138, RX 8130-8138, HS 8130-8138,7190-7191	yranis A	4 . 9
			, , ,		
	and remove	814	8140-8148, RX 8140-8148, HS 8140-8148	4	5
		816	8160-8168 / RX 8160-8168 / HS 8160-8168	4	5

Lindström Tweezers Styles for every application

< Fiber Tip

Minimises scratching and damage to delicate surfaces, high-temperature ESD safe tips.

SMD 🔺

Smooth edges and a wide choice of tips and angles assure ease of component handling and protection of board surfaces.

Carbon Fiber Tweezers with Replaceable Tips

ESD safe for use on sensitive electronic assemblies. Good heat resistance (150°C / 300°F) for positioning components and devices in hightemperature environments. Very high rigidity and strength for precise applications. Polyamide-based carbon fiber offers excellent chemical resistance.

Tweezers

General Purpose

Very accurate finish for a wide variety of applications from electronics to bio medical uses. Extremely accurate serration quality. Different lengths, thicknesses and angles for every application. Stainless and/or antimagnetic/anti-acid steel.

Component Handling >

Anti-magnetic/anti-acid steel.

Large and strong tips with perfect balance, symmetry and alignment for demanding tasks of all types.

Ceramic Tip Tweezers >

Electrically insulative, and stable at high temperature. Very hard surface, high flexural strength and fracture toughness. Extreme corrosion resistance.

249CFR-SA

SL Series Tweezers

Competitively priced, high quality tweezers. ESD safe for secure use in electronics assembly. Anti-acid stainless steel for durable performance.

High Precision /

CLINDSTROM

Fine points, perfect alignment, polished edges and anti-glare satin finish for the most demanding work, particulary under magnification.

Ergonomic Touch Tweezers >

Tactile grips for increased precision and reduced fatigue. Static dissipative grips offer added comfort.

TWEEZERS

HIGH PRECISION TWEEZERS

- Stainless-steel body
- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH FLAT EDGE AND THICK TIPS 120 MM

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS	SION TWEEZERS W	ИТН			ALL STREET	6100
FLAT EDGE AND THICK TIPS 120 MM						
TL 00-SA					▶■◀	
	Part No.		mm / in	mm / in	mm / in	g
	TL 00-SA	00	120 / 4,72	0,5 / 0,02	0,9 / 0,04	21
1 HINDING						
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS SERRATED THICK TIPS 120 MM	SION TWEEZERS W	1TH		and the second	TIT	
TL 00B-SA				11 million		
	Part No.			mm / in		g
	TL 00B-SA	00B	mm / in 120 / 4,72	mm / in 0,5 / 0,02	mm / in 0,9 / 0,04	20
						3
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS SERRATED TIPS 120 MM	SION TWEEZERS W	ITH			MINI .	
				IIIII		
TL 00D-SA	5 .44		← L →	• //•	▶■◀	
	Part No.		mm / in	∐ mm / in	mm / in	g
	TL 00D-SA	00D	120 / 4,72	0,5 / 0,02	0,9 / 0,04	20
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS FLAT EDGE AND FINE TIPS 90 MM	SION TWEEZERS W	/ITH				
TL 0C9-SA	Part No.		<mark>← L →</mark>	*)	▶■◀	
			mm / in	mm / in	mm / in	_ g _
	TL 0C9-SA	0C9	90 / 3,54	0,1 / 0	0,15 / 0,01	9

High Precision Tweezers

HIGH PRECISION TWEEZERS

- Stainless-steel body
- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH STRONG AND BOUND TIPS 120 MM

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS Strong and round tips 120 mm TL 2A-SA	SION TWEEZERS W	ІТН		5		
	Part No.		← L→	•		g
	TL 2A-SA	2A	mm / in 120 / 4,72	0,1/0	mm / in 1,9 / 0,07	15
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS Very Sharp TIPS 120 MM	SION TWEEZERS W	ITH				
TL 3-SA				•\.	▶■◀	_
	Part No.		mm / in	mm / in	mm / in	g
	TL 3-SA	3	120 / 4,72	0,12/0	0,18 / 0,01	14
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS VERY SHARP TIPS 110 MM	SION TWEEZERS W	ITH				
TL 3C-SA				+) (▶■◀	
	Part No.		<mark>← └ →</mark> mm / in) mm / in	mm / in	g
	TL 3C-SA	3C	110 / 4,33	0,12/0	0,18 / 0,01	12
						-
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECIS TAPERED AND RELIEVED EXTRA FINE TIPS 110		ITH		- in -		
TL 5-SA				<i>•</i> ۲	≻■∢	-
	Part No.	\geq	mm / in)) mm / in	mm / in	a
	TL 5-SA	5	110 / 4,33	0,07 / 0	0,12/0	13

TWEEZERS

g

14

HIGH PRECISION TWEEZERS

- Stainless-steel body
- Polished finish
- Excellent anti-acid, anti-magnetic properties
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH EXTRA FINE AND DOUBLE BENT TIPS 115 MM

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH EXTRA FINE BENT TIPS 110 MM TL 5B-SA

Part No.	\sim	<mark>← └</mark> → mm / in	mm / in	▶ mm / in	g
TL 5B-SA	5B	110 / 4,33	0,08 / 0	0,13 / 0,01	13

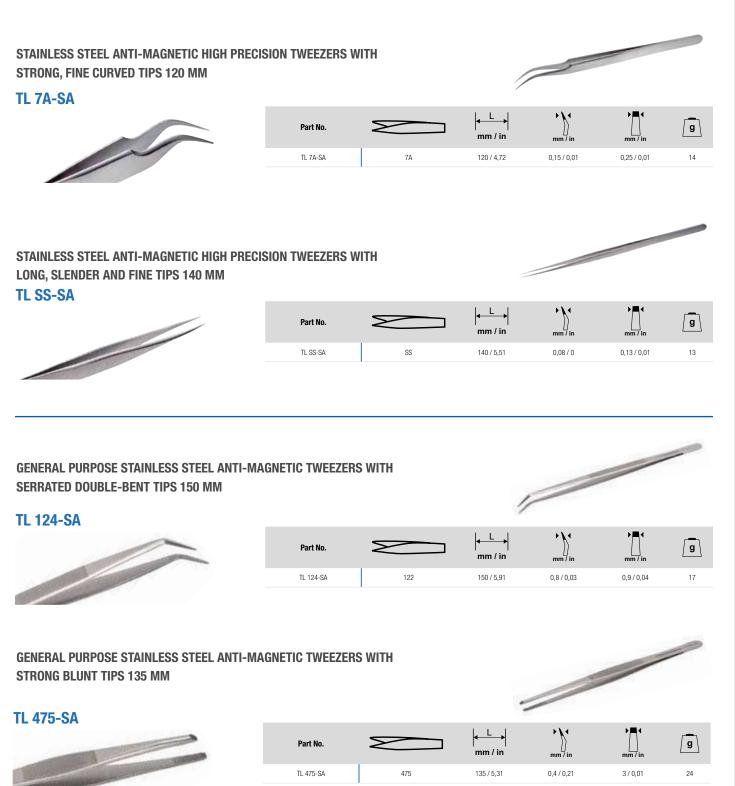
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH LONG FINE CURVED TIPS 140 MM

TL 65A-SA

Part No.	\sim	<mark> ← └</mark> → mm / in	mm / in	► mm / in	g
TL 65A-SA	65A	140 / 5,51	0,09 / 0	0,15 / 0,01	12

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION TWEEZERS WITH FINE CURVED TIPS 120 MM

TL 7-SA



▶LINDSTRÖM^{*}

HIGH PRECISION TWEEZERS - GENERAL PURPOSE TWEEZERS

- Stainless-steel body
- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Lindström tweezers offer perfect balance, tip alignment and symmetry

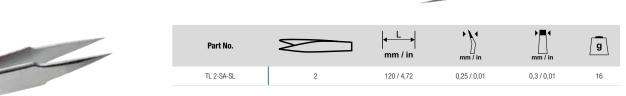
TWEEZERS

GENERAL PURPOSE TWEEZERS - INDUSTRIAL USE TWEEZERS

- · Stainless-steel body
- Polished finish
- Excellent anti-acid, anti-magnetic properties
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

GENERAL PURPOSE STAINLESS STEEL ANTI-MAGNETIC TWEEZERS WITH SERRATED FINE TIPS 157 MM TL 648-SA L Part No. g mm / in TL 648-SA 648 157 / 6.18 0.9/0.04 0.9/0.04 22 i **GENERAL PURPOSE STAINLESS STEEL ANTI-MAGNETIC TWEEZERS WITH SERRATED FINE BENT TIPS 155 MM TL 649-SA** < L→ mm / in Part No. g mm / in TL 649-SA 649 155/6.1 0.9/0.04 0.9/0.04 22 STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL **TWEEZERS WITH FLAT EDGE AND STRONG TIPS 120 MM** TL 00-SA-SL < L → Part No. g mm / in TL 00-SA-SL 00 120 / 4,72 0,25 / 0,01 0,25 / 0,01 20 STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL **TWEEZERS WITH FINE TIPS 120 MM**

TL 1-SA-SL



INDUSTRIAL USE TWEEZERS

- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Suitable for industrial applications
- Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH TAPERED AND FINE TIPS 120 MM

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH FLAT AND ROUND TIPS 118 MM

TL 2A-SA-SL

TL 2-SA-SL

Part No.		<mark>← └</mark> → mm / in	mm / in	► mm / in	g
TL 2A-SA-SL	2A	118 / 4,65	0,3 / 0,01	2 / 0,08	16

5

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH VERY SHARP TIPS 125 MM

TL 3-SA-SL

Part No.		<mark> ← └</mark> → mm / in	mm / in	► mm / in	g
TL 3-SA-SL	3	125 / 4,92	0,2 / 0,01	0,25 / 0,01	15

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH VERY SHARP TIPS 110 MM

TL 3C-SA-SL

Part No.		<mark>← L</mark> → mm / in	mm / in	► mm / in	g
TL 3C-SA-SL	ЗC	110 / 4,33	0,2 / 0,01	0,25 / 0,01	13

TWEEZERS

INDUSTRIAL USE TWEEZERS

- Polished finish
- · Excellent anti-acid, anti-magnetic properties
- Suitable for industrial applications
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL **TWEEZERS WITH TAPERED AND EXTRA FINE TIPS 110 MM**

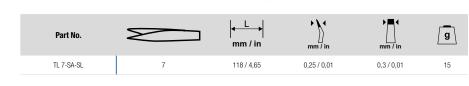
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECI TWEEZERS WITH TAPERED AND EXTRA FINE TH					and the second	1971
TL 4-SA-SL			1			
	Part No.		←└→ mm / in	mm / in	► mm/in	g
-11.34	TL 4-SA-SL	4	110 / 4,33	0,3 / 0,01	0,3 / 0,01	13
Tratomic and a later						

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH TAPERED AND RELIEVED, EXTRA FINE TIPS 110 MM

Part No.		<mark>← L</mark> → mm / in	mm / in	▶ mm/in	g
TL 5-SA-SL	5	110 / 4,33	0,2 / 0,01	0,2 / 0,01	13

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL **TWEEZERS WITH EXTRA FINE AND LIGHTLY CURVED TIPS 115 MM**

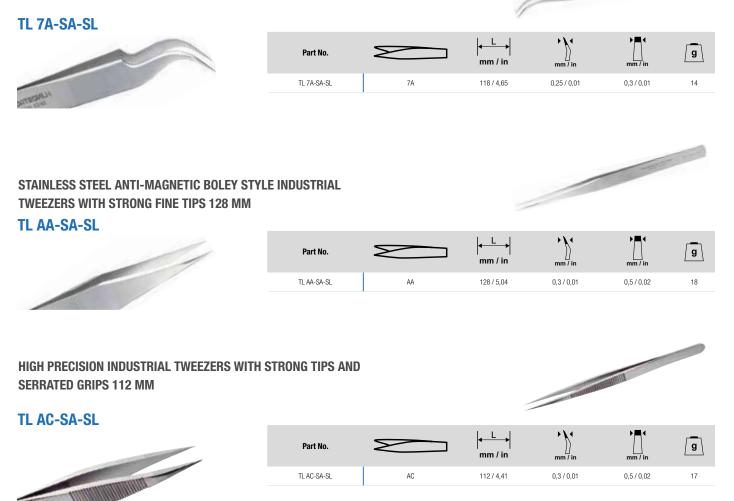
TL 5A-SA-SL



Part No.		<mark>← └</mark> →│ mm / in	▶ mm/in	► mm / in	g
TL 5A-SA-SL	5A	115 / 4,53	0,2 / 0,01	0,25 / 0,01	14

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL **TWEEZERS WITH EXTRA FINE CURVED TIPS 118 MM**

TL 7-SA-SL


►LINDSTRÖM[®]

INDUSTRIAL USE TWEEZERS

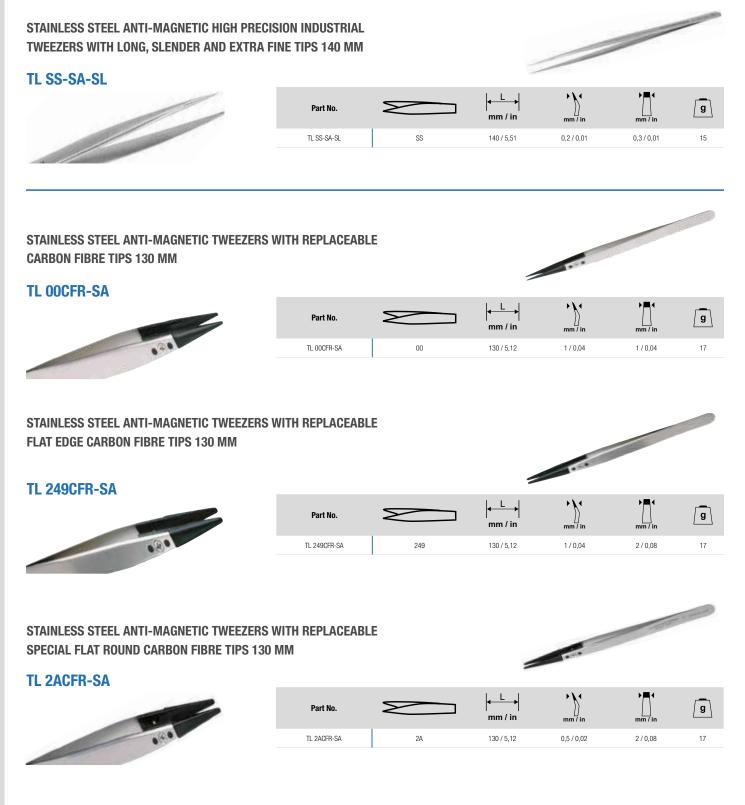
INDUSTRIAL USE TWEEZERS

- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Suitable for industrial applications
- Lindström tweezers offer perfect balance, tip alignment and symmetry

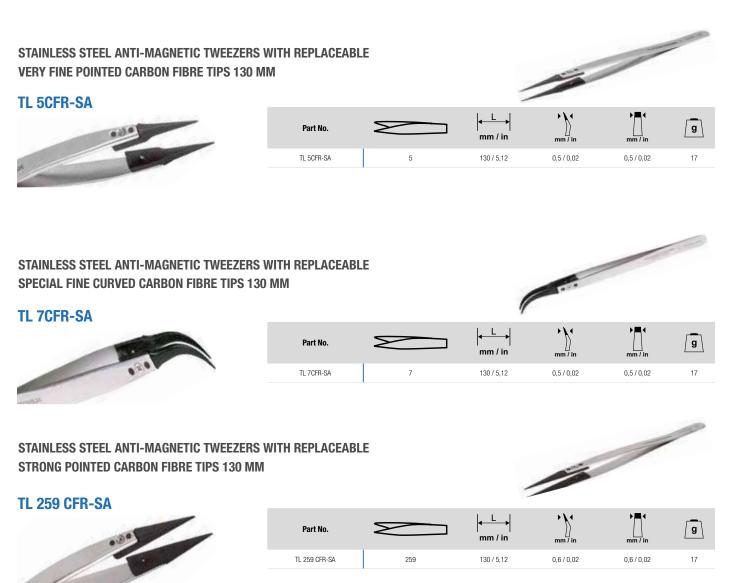
STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION INDUSTRIAL TWEEZERS WITH FINE CURVED TIPS 118 MM

STAINLESS STEEL ANTI-MAGNETIC BOLEY STYLE INDUSTRIAL TWEEZERS WITH STRONG TIPS 130 MM

TL MM-SA-SL



Part No.		<mark> ← └</mark> → mm / in		► L	g
TL MM-SA-SL	ММ	130 / 5,12	mm / in 0,4 / 0,2	mm / in 0,4 / 0,01	18


INDUSTRIAL USE TWEEZERS - CARBON FIBRE TIPS TWEEZERS

- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Suitable for industrial applications
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

CARBON FIBRE TIPS TWEEZERS

- Stainless-steel body and carbon fibre tips
- Polished finish
- Lindström tweezers offer perfect balance, tip alignment and symmetry

249ACF FLAT EDGE AND THICK REPLACEMENT TIPS 40 MM

TL 249 ACF

. 249 AGF	Part No.		<mark>↓ L</mark> mm / in	▶ mm/in	► mm / in	g
4.14	TL 249 ACF	249	40 / 1,57	1 / 0,04	2 / 0,08	2
5 - 3						

CARBON FIBRE TIPS TWEEZERS

- Includes 2 tips and 3 screws
- Supplied in a plastic bag

259ACF EXTRA FINE REPLACEMENT TIPS 40 MM

Part No.	\sim	<mark>← └</mark> → mm / in	mm / in	mm / in	g
TL 259 ACF	259	40 / 1,57	0,6 / 0,02	0,6 / 0,02	2

2AACF REPLACEMENT TIPS 40 MM

TL 2A ACF

Part No.		<mark> ← └</mark> → mm / in	mm / in	► mm/in	g
TL 2A ACF	2A	40 / 1,57	0,5 / 0,02	2 / 0,08	2

5ACF REPLACEMENT TIPS 40 MM

TL 5ACF

Part No.	\geq	<mark>← └ →</mark> mm / in	mm / in	▶ mm / in	g
TL 5ACF	5	40 / 1,57	0,5 / 0,02	0,5 / 0,02	2

7ACF FINE CURVED REPLACEMENT TIPS 40 MM

TL 7ACF

TL 7ACF 7 40 / 1,57 0,5 / 0,02 0,5 / 0,02 2	Part No.	\sum	<mark> ←└→</mark> mm / in	mm / in	► mm / in	g
	TL 7ACF	7	40 / 1,57	0,5 / 0,02	0,5 / 0,02	2

►LINDSTRÖM[®]

PRECISION COMPONENT HANDLING TWEEZERS - SMD TWEEZERS

- Polished finish
- Excellent anti-acid, anti-magnetic properties
- Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC PRECISION COMPONENT HANDLING TWEEZERS WITH 6 MM 90° ANGLED TIPS 120 MM **TL 578-SA** ▲ L Part No. mm / in TL 578-SA 578 120 / 4,72 1,3/0,05 4/0,16 STAINLESS STEEL ANTI-MAGNETIC PRECISION COMPONENT HANDLING TWEEZERS WITH 4 MM 90° ANGLED TIPS 115 MM **TL 582-SA** < L→ Part No. mm / in TL 582-SA 115 / 4,53 0,9/0,04 578 3,5/0,14

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING 2 AND 3 LEAD SOT PACKAGES 45° ANGLE 115 MM $\,$

Part No.	\sim	<mark>← └ →</mark> mm / in	▶ mm/in	► mm / in	g
TL SM 103-SA	SM103	115 / 4,53	0,35 / 0,01	1,6 / 0,06	15

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING 3 LEAD SOT PACKAGES 120 MM

TL SM 1	04-SA	1
100		

		1			
Part No.	\sim	<mark>← └</mark> →│ mm / in	mm / in	▶ mm/in	g
TL SM 104-SA	SM104	120 / 4,72	0,35 / 0,01	1,7 / 0,07	15

g

15

| g |

15

TWEEZERS

SMD TWEEZERS

- Polished finish
- Excellent anti-acid, anti-magnetic properties
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING SOT PACKAGES VERTICALLY 120 MM

Part No.		<mark>← └</mark> → mm / in	mm / in	► mm / in	g
TL SM 105-SA	SM105	120 / 4,72	0,35 / 0,01	1,6 / 0,06	15

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING ALL FLAT DEVICES AT 60° ANGLE 120 MM

TL SM 107-SA

TL SM 108-SA

TL SM 105-SA

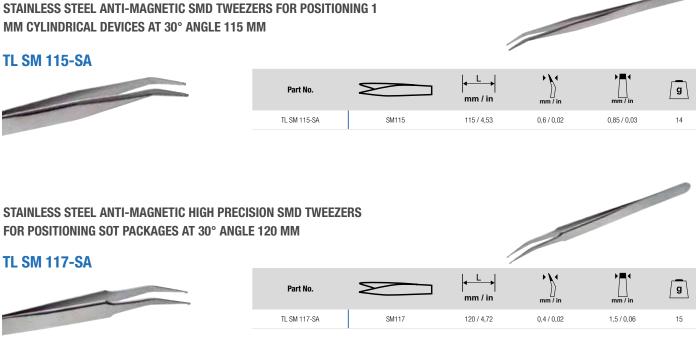
	•
and the second	

Part No.	\sim	<mark>∢ └ →</mark> mm / in	mm / in	▶ mm/in	g
TL SM 107-SA	SM107	120 / 4,72	0,15 / 0,01	1,4 / 0,06	15

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING 1 MM COMPONENTS 120 MM

Part No.	\sim	<mark>← └ →</mark> mm / in	▶ mm/in	▶ mm / in	g
TL SM 108-SA	SM108	120 / 4,72	0,3 / 0,01	1,5 / 0,06	15

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING 1 MM COMPONENTS AT 45° ANGLE 120 MM


TL SM 109-SA

Part No.	\geq	<mark>← └</mark> → mm / in	mm / in	► mm/in	g
TL SM 109-SA	SM109	120 / 4,72	0,3 / 0,01	1,1 / 0,04	15

►LINDSTRÖM[®]

►LINDSTRÖM[®]

g

15

79

SMD TWEEZERS

Polished finish

TL SM 110-SA

TL SM 111-SA

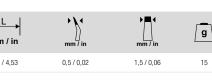
- · Excellent anti-acid, anti-magnetic properties
- · Lindström tweezers offer perfect balance, tip alignment and symmetry

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS FOR POSITIONING MONOLITHIC CHIP CAPACITORS 120 MM

↓ L Part No. mm / in TL SM 110-SA SM110 120/4.72

STAINLESS STEEL ANTI-MAGNETIC HIGH PRECISION SMD TWEEZERS

STAINLESS STEEL ANTI-MAGNETIC SMD TWEEZERS FOR POSITIONING 1


FOR POSITIONING 5 MM MONOLITHIC CHIP CAPACITORS 115 MM

2/0.08

0.45 / 0.02

Part No.	\geq	<mark>← └</mark> → mm / in	▶ mm/in	► mm / in	a
TL SM 115-SA	SM115	115 / 4,53	0,6 / 0,02	0,85 / 0,03	14

High Precision Torque Screwdrivers

Lindström Torque Screwdrivers eliminate the over-application of force, thereby reducing the risk for damage and rework costs. They feature an ergonomic shape, a durable positive grip powder-coated surface, and an anti-magnetic ESD safe bit holder that accepts any standard 1/4" Hex drive bit.

The two models available are the Micro-Adjustable Torque Screwdriver and the Preset Torque Screwdriver.

HIGH PRECISION TORQUE CONTROL

With a unique high-precision cam-over torque-limiting design, Lindström's torque screwdrivers eliminate over application of force reducing the risk of damage and rework costs. Available in micro-adjustable or preset torque versions, Lindström's torque screwdrivers offer comfort with a user friendly shape and non-slip grip. Built to last with a non-magnetic bit holder that accepts any standard 1/4" Hex drive Bit, it is the ideal choice for flexible applications as well as volume production. All models are ESD-safe.

MICRO-ADJUSTABLE TORQUE SCREWDRIVERS

The micro-adjustable torque screwdriver allows instant change to the torque value with an easy-to-read window scale and a precise pull-to-set, push-to-lock mechanism. Adjustment is easy - simply pull the knob, turn to the desired torque, push the knob back in, and it is ready to use.

The micro-adjustable screwdriver series includes three models ranging from 14 to 451.94 Ncm or 20 in.oz. to 40 in.lbs. Accuracy +/- 6%.

PRESET TORQUE SCREWDRIVER

An outstanding selection for high-volume use in assembly where precision and repeatability is paramount. Torque values are easily set on this durable driver.

The end cap removes for access to the 1/8" Hex adjustment screw (Hex key included with each driver). Use a certified torque tester to verify the exact torque value after adjustment. Replace the end cap and it's ready to go.

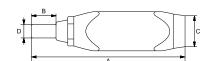
All Lindström torque devices are ESD safe.

Warning! Lindström Torque Screwdrivers should never be used on electrified equipment.

MICRO-ADJUSTABLE TORQUE SCREWDRIVER

- ESD safe (IEC 61340-5-1)
- Torque limiting clutch prevents over application of force to fastener
- 1/4" Hexagon anti-magnetic spring loaded bit holder to avoid ESD damage to sensitive equipment or components in electronic applications
- · Adjustable Torque Screwdriver, with all metal 3-lobe shaped handle
- · Powder coat wrinkle finish provides positive grip
- · Cam-over torque limiting clutch for repeatability
- Store driver in the protective case at lowest torque setting
- Accuracy meets or exceeds +/-6% over recommended usage period: 5.000 cycles or one year, whichever occurs first
- Clockwise torque measurement only. It can be used to loosen fasteners without affecting the internal mechanism
- Cam-Over technology provides tactile and audible feedback when torque values are reached
- · Supplied with an internal declaration of conformity in compliance with International standards
- Standard adjustable drivers include SAE window scale
- ISO 6789, ISO 1174, ASME B107.300-2010
- Made in USA

Truly ESD Safe, extremely accurate and durable, delivering repeatable torque values



Part No.	cN-M	in-oz	in-lb	0	cN-M	A mm / in	B mm / in	C mm / in	D mm / in	kg
MA500-1A	16-80 cNM	20-200 in·oz		1/4 in	1	5.43 / 138	18.2 / 0.72	28 / 1.10	9.6 / 0.38	0.2
MA500-2A	40-200 cNM		3-15 lb∙in	1/4 in	2	6.18 / 157	18.2 / 0.72	28 / 1.10	9.6 / 0.38	0.26
MA500-3A	90-450 cNM		5-40 lb∙in	1/4 in	5	6.73 / 171	18.2 / 0.72	32 / 1.26	9.6 / 0.38	0.308

Precision Cutters For Hard Material

pment or ar,

PRESET TORQUE SCREWDRIVER

- ESD safe (IEC 61340-5-1)
- Torque limiting clutch prevents over application of force to fastener
- 1/4" Hexagon anti-magnetic spring loaded bit holder to avoid ESD damage to sensitive equipment or components in electronic applications
- Preset Torque Screwdriver, with all metal 3-lobe shaped handle
- Cam-over torque limiting clutch for repeatability
- Powder coat wrinkle finish provides positive grip
- Accuracy meets or exceeds +/-6% over recommended usage period: 5000 cycles or one year, whichever occurs first
- Clockwise torque measurement only. It can be used to loosen fasteners without affecting the internal mechanism
- Cam-Over technology provides tactile and audible feedback when torque values are reached
- On request, preset screwdrivers can be set and certified with a declaration of conformity in compliance with International Standards
- ISO 6789, ISO 1174, ASME B107.300-2010
- Made in USA

Part No.	cN-M	in-lb	0	A mm / in	B mm / in	C mm / in	D mm / in	kg
PS501-1	4-22 cNM	6-32 in∙oz	1/4 in	4.53 / 115	18.2 / 0.72	28/1.10	9.6 / 0.38	0.147
PS501-2	7-70 cNM	10-100 in·oz	1/4 in	5.55 / 141	18.2 / 0.72	28/1.10	9.6 / 0.38	0.200
PS501-3	15-170 cNM	1.5-15 in·lbs	1/4 in	5.55 / 141	18.2 / 0.72	28/1.10	9.6 / 0.38	0.198
PS501-4	45-450 cNM	4-40 in Ibs	1/4 in	6.06 / 154	18.2 / 0.72	32 / 1.26	9.6 / 0.38	0.270

Warranty

Lindström brand tools carry a full guarantee covering defects in manufacturing material and workmanship. Lindström does not offer, suggest nor imply a lifetime warranty applies to any tool, product or service. Tools subjected to misapplication, abnormal use, abuse, alteration, or continued use after the tool is significantly worn, are not covered by this warranty. The Lindström facility conducts all tool evaluations for warranty claims.

Warranty Address: SNA Europe [UK] Moorhead Way Bramley, Rotherham South Yorkshire S66 1YY

E-mail: sales.uk@snaeurope.com

Questions involving the performance of your Lindström tools should be directed to our customer service office listed above.

Services

Only factory-authorised service can offer resharpening and reconditioning that keeps the Lindström warranty intact.

Services offered include:

- Cutter reconditioning: Sharpening cutting edges, installing new grips & springs, adjusting the joint
- Sharpening only: Cutters, scissors, cutting tweezers
- Pliers reconditioning: Jaw resurfacing, installing new grips and springs and adjusting the joint
- Recalibration: Repair, recalibration, and recertification for torque screwdrivers
- Tweezers reconditioning: Tip straightening and realignmen

Call 01709 731731 or E-mail us at sales.uk@snaeurope.com for pricing and lead-time.

CONTENT

Part Number	Page
RX 8130	20
RX 8131	20
RX 8132	20
RX 8140	20
RX 8141	20
RX 8142	20
RX 8150	20
RX 8151	20
RX 8152	20
RX 8160	20
RX 8161	20
RX 8162	20
8130	21
8131	21
8132	21
8140	21
8141	21
8142	21
8150	21
8151	21
8152	21
8160	21
8161	21
8162	21
8131 CO	21
8140 CO	21
8141 CO	21
8142 CO	21
8150 CO	21
8151 CO	21
8160 CO	21

Part Number	Page
8161 CO	21
HS 8130	21
HS 8131	21
HS 8132	21
HS 8140	21
HS 8141	21
HS 8142	21
HS 8150	21
HS8151	21
HS8152	21
HS 8160	21
HS 8161	21
HS 8162	21
RX8133	22
RX8134	22
RX8135	22
RX 8143	22
RX 8144	22
RX 8145	22
RX 8153	22
RX 8154	22
RX8155	22
RX8163	22
RX 8164	22
RX 8165	22
8133	23
8134	23
8135	23
8143	23
8144	23
8145	23

Part Number	Page
8153	23
8154	23
8155	23
8163	23
8164	23
8165	23
8144 CO	23
8154 CO	23
8163 CO	23
8165 CO	23
7190	23
7191	23
7190 CO	23
7191 CO	23
HS8133	23
HS8134	23
HS8135	23
HS 8143	23
HS 8144	23
HS 8145	23
HS8153	23
HS8154	23
HS8155	23
HS 8163	23
HS 8164	23
HS8165	23
RX8136	24
RX 8137	24
RX8138	24
RX 8146	25
RX 8147	24

Part Number	Page
RX 8148	24
RX 8156	24
RX 8157	24
RX 8158	24
RX8166	24
RX 8167	24
RX 8168	24
RX8137MX	24
RX8138MX	24
8136	25
8137	25
8138	25
8146	25
8147	25
8148	25
8156	25
8157	25
8158	25
8166L	25
8167L	25
8168L	25
8148 CO	25
HS8136	25
HS8137	25
HS8138	25
HS8146	25
HS8147	25
HS 8148	25
HS8156	25
HS8157	25
HS8158	25

HS8166 25 HS8167 25 HS8168 25 8150 J 26 8150 J 26 8150 SK 26 8150 SK 28 RX8140M2 28 RX8150M2 28 8140M2 28 8150M2 28 8150M2 28 8140M2 28 8150M2 28 8150M2 28 8140M2 28 8150M2 29 RX8140PS 29 RX8141PS 29 RX8160BPS 29 8140PS 29 8140PS 29 RX8160BPS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8160BPS 29 <	Part Number	Page
HS8168 25 8150 J 26 8150 J 26 8150 SK 26 7154TC 28 8154PSP 28 RX8140M2 28 RX8150M2 28 8150 M2 28 8150M2 28 8150M2 28 8150M2 28 8160 M2 28 8160 M2 28 8150M2 28 8140M2 28 8150M2 28 8140PS 29 RX8140PS 29 RX8141PS 29 RX8140PS 29 RX8160BPS 29 RX8160BPS 29 RX8160BPS 29 RX8160BPS 29 RX8160BPS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8142PS 29 RX8160BPS 29 8160PS 2	HS8166	25
8150 J 26 8150 J 26 8160 J 26 8150 SK 26 7154TC 28 8154PSP 28 RX8140M2 28 RX8150M2 28 8140M2 29 RX8140PS 29 RX8150PS 29 RX8160BPS 29 8140PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29	HS8167	25
8160 J 26 8150 SK 26 8150 SK 26 7154TC 28 8154PSP 28 RX8140M2 28 RX8150M2 28 8154PSP 28 RX8160M2 28 8140M2 28 8140M2 28 8150M2 28 8140M2 28 8150M2 29 RX8141PS 29 RX8140PS 29 RX8160BPS 29 8140PS 29 8140PS 29 RX 8142PS 29 RX 8160PS 29 <td>HS8168</td> <td>25</td>	HS8168	25
8150 SK 26 7154TC 28 8154PSP 28 RX8140M2 28 RX8150M2 28 RX8160M2 28 8154PSP 28 RX8150M2 28 8140M2 28 8140M2 28 8150M2 28 8160M2 28 8150M2 28 8160M2 28 RX8140PS 29 RX8141PS 29 RX8141PS 29 RX8150PS 29 RX8160BPS 29 RX8160BPS 29 8140PS 29 RX8160BPS 29 RX8160BPS 29 RX8147PS 29 RX 8142PS 29 RX 8142PS 29 RX 8142PS 29 RX 8142PS 29 RX 8160PS 29 8160PS 29 RX8160BPS 29 8160PS	8150 J	26
7154TC 28 7154TC 28 8154PSP 28 RX8140M2 28 RX8150M2 28 RX8160M2 28 8140M2 28 8150M2 28 8150M2 28 8160 M2 28 RX8140PS 29 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX8160BPS 29 8140PS 29 RX 8161PS 29 8140PS 29 RX 8161PS 29 RX 8161PS 29 8140PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29	8160 J	26
8154PSP 28 RX8140M2 28 RX8150M2 28 RX8160M2 28 8140M2 28 8140M2 28 8150M2 28 8150M2 28 8160 M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX8150PS 29 RX8160BPS 29 8140PS 29 8140PS 29 RX 8161PS 29 8140PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	8150 SK	26
RX8140M2 28 RX8150M2 28 RX8160M2 28 8140M2 28 8140M2 28 8150M2 28 8150M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 RX 8161PS 29 RX 8142PS 29 8140PS 29 RX 8160BPS 29 8140PS 29 8140PS 29 8140PS 29 RX 8147PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29 8160PS 29	7154TC	28
RX8150M2 28 RX8160M2 28 8140M2 28 8150M2 28 8150M2 28 8150M2 28 8150M2 28 8150M2 28 8160 M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX8160BPS 29 RX8160BPS 29 8140PS 29 8140PS 29 RX 8161PS 29 8140PS 29 8140PS 29 8140PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8160PS 29	8154PSP	28
RX8160M2 28 8140M2 28 8150M2 28 8150M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX 8160BPS 29 RX 8160BPS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 8140PS 29 RX 8147PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	RX8140M2	28
8140M2 28 8150M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX 81450PS 29 RX8160BPS 29 8140PS 29 8140PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 8140PS 29 8140PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	RX8150M2	28
8150M2 28 8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX 8160BPS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29	RX8160M2	28
8160 M2 28 RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX 8147PS 29 RX8150PS 29 RX8160BPS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	8140M2	28
RX8140PS 29 RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX 81450PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29	8150M2	28
RX8141PS 29 RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX8150PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8150PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	8160 M2	28
RX 8142PS 29 RX 8142PS 29 RX 8147PS 29 RX8150PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8160PS 29	RX8140PS	29
RX 8147PS 29 RX8150PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	RX8141PS	29
RX8150PS 29 RX8160BPS 29 RX 8161PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	RX 8142PS	29
RX8160BPS 29 RX 8161PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8142PS 29 8150PS 29 8160PS 29 8160PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29 8161PS 29	RX 8147PS	29
RX 8161PS 29 8140PS 29 8140PS 29 8141PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 8160PS 29 8161PS 29 8161PS 30	RX8150PS	29
8140PS 29 8141PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 96160 30	RX8160BPS	29
8141PS 29 RX 8142PS 29 RX 8147PS 29 8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 96160 30	RX 8161PS	29
RX 8142PS 29 RX 8147PS 29 8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 8161PS 29 8161PS 30	8140PS	29
RX 8147PS 29 8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 8161PS 29 96160 30	8141PS	29
8150PS 29 8160PS 29 RX8160BPS 29 8161PS 29 P6160 30	RX 8142PS	29
8160PS 29 RX8160BPS 29 8161PS 29 P6160 30	RX 8147PS	29
RX8160BPS 29 8161PS 29 P6160 30	8150PS	29
8161PS 29 P6160 30	8160PS	29
P6160 30	RX8160BPS	29
	8161PS	29
TRX 8180 31	P6160	30
	TRX 8180	31

CONTENT

Part Number	Page
HS6000	32
HS6001	32
7290	34
7291	34
HS7290	34
HS7291	34
7292	35
7292G	35
HS7292	35
7293	36
HS7293	36
RX 8211	37
8211	37
HS8211	37
RX 8247	38
8247	38
8247 CO	38
HS 8247	38
RX 8248	39
8248	39
8249	39
8248 CO	39
8248Q	39
HS 8248	39
7280	40
HS7280	40
7285	40
HS7285	40
RX 8149	42
8149	42
HS8149	42

	-
Part Number	Page
RX8233A	43
RX8234A	43
RX8237A	43
RX 7390	46
RX 7392	46
RX 7490	46
7490	46
7490 CO	46
HS7490	46
RX 7590	47
7590	47
7590 CO	47
HS 7590	47
RX 7890	48
RX 7891	48
7890	48
7891	48
7890 CO	48
7891 CO	48
HS 7890	48
HS 7891	48
RX 7892	49
7892	49
7892 CO	49
HS 7892	49
RX 7893	50
7893	50
7893K	50
HS 7893	50
RX 7894	51

Part Number	Page
7894	51
HS7894	51
7992	55
RX 501	55
801C	55
111A	56
RX112A	56
121A	56
HS122M.030	57
202A	57
204B	57
212A	58
RX331A	58
341A	58
RX304D	59
601A	59
614A	59
7292MI	60
RX 601-16	60
RX 01	62
8130-50/supr spring	62
8160/SPRING	62
813	62
814	62
TL 00-SA	66
TL 00B-SA	66
TL 00D-SA	66
TL 0C9-SA	66
TL 2A-SA	67
TL 3-SA	67
TL 3C-SA	67

Part Number	Page
TL 5-SA	67
TL 51S-SA	68
TL 5B-SA	68
TL 65A-SA	68
TL 7-SA	68
TL 7A-SA	69
TL SS-SA	69
TL 124-SA	69
TL 475-SA	69
TL 648-SA	70
TL 649-SA	70
TL 00-SA-SL	70
TL 1-SA-SL	70
TL 2-SA-SL	71
TL 2A-SA-SL	71
TL 3-SA-SL	71
TL 3C-SA-SL	71
TL 4-SA-SL	72
TL 5-SA-SL	72
TL 5A-SA-SL	72
TL 7-SA-SL	72
TL 7A-SA-SL	73
TL AA-SA-SL	73
TL AC-SA-SL	73
TL MM-SA-SL	73
TL SS-SA-SL	74
TL 00CFR-SA	74
TL 249CFR-SA	74
TL 2ACFR-SA	74
TL 5CFR-SA	75
TL 7CFR-SA	75

Part Number	Page
TL 259 CFR-SA	75
TL 249 ACF	75
TL 259 ACF	76
TL 2A ACF	76
TL 5ACF	76
TL 7ACF	76
TL 578-SA	77
TL 582-SA	77
TL SM 103-SA	77
TL SM 104-SA	77
TL SM 105-SA	78
TL SM 107-SA	78
TL SM 108-SA	78
TL SM 109-SA	78
TL SM 110-SA	79
TL SM 111-SA	79
TL SM 115-SA	79
TL SM 117-SA	79
MA500-1A	82
MA500-2A	82
MA500-3A	82
PS501-1	83
PS501-2	83
PS501-3	83
PS501-4	83

►LINDSTRÖM [®]	
-------------------------	--

LIND-UK-2021

>LINDSTRÖM®

